

The 11th International Conference on

Molten Slags, Fluxes and Salts

Feb 21-25, 2021 Virtual

The next milestone for scientific knowledge

TABLE OF CONTENTS

03

Conference Information

- WELCOME MESSAGE
- OVERVIEW
- COMMITTEE
- CONFERENCE TOPICS

15

Technical Programs

- KEY SPEAKERS
 - Plenary Speakers
 - Keynote Speakers
- VIRTUAL PAGE GUIDELINE
- Virtual Platform Access
- Sneak Peek of Virtual Platform
- FACTSAGE SHORT COURSE
- PROGRAM AT A GLANCE
- OPENING CEREMONY
- DISCUSSION SESSION
- AWARD & EVENT

24

Presentation List

- ORAL
- POSTER
- DISCUSSION SESSION LIST

WELCOME MESSAGE

Let us take this wonderful opportunity to welcome all our local and foreign delegates to the 11th International Conference on Molten Slags, Fluxes and Salts (MOLTEN 2021) dated February 21-25, 2021

Thank you for your interest in MOLTEN 2021. Due to world-wide spreading of the coronavirus infections (COVID-19), we have decided to hold the MOLTEN 2021 not as an in-person conference as originally planned, but as an online virtual conference.

The conference aims to provide opportunities for researchers and engineers from around the world to present their works and share their ideas in the field of Molten Slags, Fluxes and Salts. Significant advancements in all aspects of research, development, and applications shall be covered within technical presentations and posters. Another aim of the conference is to enhance the relationships between member societies and to share common goals of research, development, and application in this important field of materials.

Specifically, MOLTEN 2021 explores the recent progress in slags, fluxes and salts research based on the rich heritage from 40 years of past endeavors providing the seed for another 40 years of research growth in our field of excellence. Regardless of the field of ferrous and non-ferrous communities, environment, or energy, we hope that researchers can discuss opportunities for the present and future.

We made every effort to make this conference very useful to all participants. Despite of this difficult situation, we hope most of you will participate in MOLTEN 2021 and strengthen our communication.

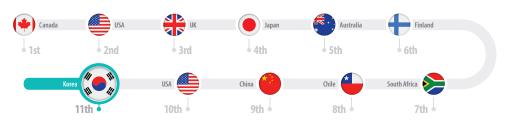
We thank you again for your participation and look forward to looking back at the 40-year history and discussing the 40 years to come with you at MOLTEN 2021.

Dong Joon MINConference Chair, MOLTEN 2021
Yonsei University

Mln Dog for

Joo CHOI

Conference Co-Chair, MOLTEN 2021
POSCO


OVERVIEW

1st Virtual Conference of MOLTEN in 40 Years

4 Plenary &
46 Keynote Talks by
Prestigious Scholars

145 oral & 50 Poster Presentations from 23 Countries

Title	The 11th International Conference on Molten Slags, Fluxes and Salts (MOLTEN 2021)
Date	February 21 (Sun) - 25 (Thu), 2021
Venue	Virtual, Korea
Program	FactSage Short Course, Plenary & Keynote & Oral & Poster Session, Discussion Session, Opening Ceremony
Hosted by	The Korean Institute of Metals and Materials
Organized by	Innovative Materials Convergence Education & Research Center at Hanyang University ERICA Education and Research Division for Futuristic Human-centric Materials, Yonsei University
Technically Co-Sponsored by	The Chinese Society for Metals The Iron and Steel Institute of Japan The Minerals, Metals & Materials Society
Sponsored by	POSCO, LS-Nikko Copper, Hyundai Steel, KOSA, SeAH Besteel, SeAH CSS, Dongkuk Steel, SIMPAC, ECOMAISTER, KIGAM, KIM Nonferrous Metallurgy Committee, Stollberg & Samil, SungEel HiMetal, POSCO C&C
Supported by	The Korean Federation of Science and Technology Societies, Seoul Metropolitan Government, Korea Tourism Organization
Website	www.molten2020.org

COMMITTEE

Conference Chair

Dong Joon MIN Yonsei University Korea

Conference Co-Chair

Joo CHOI POSCO Korea

Secretary General

Joo Hyun PARK Hanyang University Korea

International Advisory Committee

Peter HAYES University of Queensland Australia Olea OSTROVSKI University of New South Wales Australia Johannes SCHENK Montanuniversitaet Leoben Austria Bart BL ANPAIN Katholieke Universiteit Leuven Belgium Maurits VAN CAMP Umicore Belgium Marcelo Breda MOURAO University of São Paulo Brazil Mansoor BARATI Canada University of Toronto Patrice CHARTRAND Ecole Polytechnique de Montreal Canada Rafael PADILLA University of Concepción Chile Chenguang BAI China Chongging University Xinhua WANG China University of Science and Technology Beijing Timo FABRITUS Finland University of Oulu Lauri HOLAPPA Finland Aalto University Jean I FHMANN ArcelorMittal France Gerardo ALVFAR Aurubis AG Germany Piotr SCHELLER TU Bergakademie Freiberg Germany Gudrun SAFVARSDOTTIR Reykjavik University Iceland Brahma DFO Indian Institute of Technology Kanpur India Kazuki MORITA University of Tokyo Japan Toshihiro TANAKA Osaka University Japan In-Ho JUNG Seoul National University Korea Pohang University of Science and Technology Suna Mo JUNG Korea Joonho LEE Korea University Korea Joo Hyun PARK Hanyang University Korea

II SOHN	Yonsei University	Korea
Merete TANGSTAD	Norwegian University of Science and Technology	Norway
Miroslaw KARBOWNICZEK	AGH University of Science and Technology	Poland
Alexander KONDRATIEV	National University of Science and Technology (MISIS)	Russia
Rauf ERIC	University of the Witwatersrand	South Africa
Rodney JONES	Mintek	South Africa
Bo BJORKMAN	Luleå University of Technology	Sweden
Pär JÖNSSON	KTH Royal Institute of Technology	Sweden
Zushu LI	University of Warwick	UK
Volodymyr SHATOKHA	National Metallurgical Academy of Ukraine	Ukraine
Uday PAL	Boston University	USA
Chris PISTORIUS	Carnegie Mellon University	USA
Ramana REDDY	University of Alabama	USA

Technical Steering Committee

Physical	Chemistry	Fundamentals	
----------	-----------	--------------	--

Joonho LEE	Korea University	Korea
Sridhar SEETHARAMAN	Colorado School of Mines	USA
Nonferrous & Ferroalloys		
Joo Hyun PARK	Hanyang University	Korea
Jafar SAFARIAN	Norwegian University of Science and Technology	Norway
Ironmaking		
Sung Mo JUNG	Pohang University of Science and Technology	Korea
Nurni VISWANATHAN	Indian Institute of Technology Bombay	India
Thermodynamic Modeling		
In-Ho JUNG	Seoul National University	Korea
Evgueni JAK	University of Queensland	Australia
Steelmaking		
Youn-Bae KANG	Pohang University of Science and Technology	Korea
Hiroyuki SHIBATA	Tohoku University	Japan
Recycling & Energy Saving		
II SOHN	Yonsei University	Korea
Jinichiro NAKANO	National Energy Technology Laboratory	USA

Continuous Casting Mold Fluxes

Jung Wook CHO	Pohang University of Science and Technology	Korea
Wanlin WANG	Central South University	China

Electrometallurgy & Molten Salts

Jong Hyeon LEE	Chungnam National University	Korea
Toru OKABE	University of Tokyo	Japan

Refractory

Yongsug CHUNG	Korea Polytechnic University	Korea
Muxing GUO	Katholieke Universiteit Leuven	Belgium

Local Organizing Committee

Jongshin CHANG	LS-Nikko Copper	Korea
Jung Wook CHO	Pohang University of Science and Technology	Korea
Yongsug CHUNG	Korea Polytechnic University	Korea
Eun Jin JUNG	Research Institute of Industrial Science and Technology	Korea
In-Ho JUNG	Seoul National University	Korea
Sung Mo JUNG	Pohang University of Science and Technology	Korea
Youn-Bae KANG	Pohang University of Science and Technology	Korea
Youngjo KANG	Dong-A University	Korea
Dong Soo KIM	Doosan Heavy Industry	Korea
Seong Yeon KIM	POSCO	Korea
Sun Joong KIM	Chosun University	Korea
Young Hwan KIM	DongKuk Steel	Korea
Jong Hyeon LEE	Chungnam National University	Korea
Joonho LEE	Korea University	Korea
Hyun Sik PARK	Korea Institute of Geoscience and Mineral Resources	Korea
Joo Hyun PARK	Hanyang University	Korea
II SOHN	Yonsei University	Korea
Soon Jae TAE	Hyundai Steel	Korea
Marie-Aline VAN ENDE	Seoul National University	Korea

CONFERENCE TOPICS

Ferroalloys slags	Physicochemical properties of slags	
I. manganese ferroalloys slags	I. viscosity	
II. physicochemical properties of ferroalloys slags	II. physical property and structure characterization	
	III. multiphase crystallization	
	IV. application to steelmaking	
Refractories	Characterization of slags	
I. refractory-slag reaction	l. in-situ observation	
Electrochemical processing and molten salts	Energy and environments	
	Energy and environments I. energy recovery and environmental protection	
molten salts		
molten salts I. molten salts for REM recovery		
I. molten salts for REM recovery II. molten salts for metal production	I. energy recovery and environmental protection	
molten salts I. molten salts for REM recovery II. molten salts for metal production Recycling and sustainability	I. energy recovery and environmental protection Thermodynamics	

Non-ferrous slags	Ferrous slags	
I. phase equilibria of Cu smelting slag	I-1. ironmaking-1: iron ore reduction and slag formation	
II. industrial applications	I-2. ironmaking-2: physicochemical properties of ironmaking slag	
	Il-1. steelmaking-1: primary steelmaking slag	
	II-2. steelmaking-2: refining slag in HMP, BOF, EAF	
Kinetics	II-3. steelmaking-3: secondary refining and steel quality	
I. multiphase reaction kinetics	III-1. inclusion-1: clean steel practice	
Ash and weld fluxes	III-2. inclusion-2: inclusion control by slag	
I. coal ash	IV-1. mold flux-1: mold fluxes for high Al-steels	
	IV-2. mold flux-2: mold flux fundamentals	
Modeling		
I. measurement and modeling of physicochemical properties		
II. thermodynamic database development		

PROGRAM AT A GLANCE

FactSage Short Course

Feb 15-19, 2021

Installation of FactSage 8.1 Workshop Version

February 15 (Mon)

 FactSage is working only on Windows operation system. If the participants use Linux system, please install Windows operation system.

YouTube Videos for Self-Learning Instructions

February 15 (Mon) - 17 (Wed)

 Over 20 hrs of video clips for FactSage manuals and examples will be shared for self-learning of FactSage program.

Online Zoom Case Study Sessions

February 18 (Thu) - 19 (Fri)

- All the case studies will be collected from the participants by Feb 16 and demonstrated on Feb 18 and 19 through Zoom online meeting (or video-recording, if necessary).
- Zoom case study session schedule (Time: South Korean time zone)

Time Zones	Participant for Asia, India, Middle East	Participant from Europe, Africa and North & South America
Feb 18 (Thu)	Session #1 (10:00 AM - 3:00 PM)	Session #2 (10:00 PM - 2:00 AM)
Feb 19 (Fri)	Session #3 (10:00 AM - 3:00 PM)	Session #4 (10:00 PM - 2:00 AM)

- Four sessions will be opened and participants can choose any session (or all) which is more convenient.

Program Overview

Feb 22-25, 2021

Feb 22 (Mon)	Feb 23 (Tue)	Feb 24 (Wed)	Feb 25 (Thu)
Opening Ceremony ((a))) Congratulatory Speech ((a))	Discussion Session (ရှာ))	Discussion Session (ရှာ))	Discussion Session ((a)))

- Plenary / Keynote / Oral / Poster Sessions
- All presentation VODs will be opened on our virtual website from February 20 to 25.
- A special discussion session will be opened via Zoom each day at a specific time slot. Thus, everyone
 (including presenter, audience and moderator) will virtually meet through daily Zoom discussion session on
 difference timetables

Inauguration Ceremony

Opening Address

Dong Joon MIN
Conference Chair, MOLTEN 2021

Welcoming Address

Kyung-Ho SHIN President, KIM

Congratulatory Speech

Duk-Lak LEE Vice President, POSCO

Congratulatory Speech

Suk-goo DOH CEO, LS-Nikko Copper

40 Years Anniversary Celebration

- History of Molten Slag Conferences (Joohyun PARK, Hanyang University)
- Awarding a MOLTEN Appreciation Plaque to Former Chairmen

Chairman of MOLTEN 2000 Seshadri SEETHARAMAN KTH Royal Institute of Technology, Sweden

Chairman of MOLTEN 2000
Lauri HOLAPPA
Aalto University School of Chemical
Engineering, Finland

Chairman of MOLTEN 2004
P. Chris PISTORIUS
Carnegie Mellon University, USA

Chairman of MOLTEN 2009 Mario SANCHEZ Universidad Andrés Bello, Chile

Chairman of MOLTEN 2012

Kuo-Chih CHOU

University of Science and Technology
Beijing, China

Chairman of MOLTEN 2016 Ramana REDDY The University of Alabama, USA

Presentation of Next Venue for MOLTEN 2024

		February 23 (Tuesday)	
16:00-17:00	Modeling I (measurement and modeling of physicochemical properties)		
17:00-18:00	Modeling II (thermodynamic database development)	Ferroalloys slags I (manganese ferroalloys slags)	Physicochemical properties of slags I (viscosity)
18:00-19:00	(90min)	Ferroalloys slags II (physicochemical properties of ferroalloys slags)	Physicochemical properties of slags II (physical property and structure characterization)
19:00-20:00	Break	Break	Physicochemical properties of slags III (multiphase crystallization)
20:00-21:00	Thermodynamics I (phase diagrams and refining thermodynamics)	Non-ferrous slags I (Phase equilibria of Cu smelting slag)	Break
21:00-22:00	(90min)	Non-ferrous slags II (Industrial applications)	Physicochemical properties of slags IV (application to steelmaking)
	F	ebruary 24 (Wednesday)	
16:00-17:00	Ferrous slags I-1 (ironmaking-1: iron ore reduction and slag formation)	Ferrous slags II-1 (steelmaking-1: primary steelmaking slag)	
17:00-18:00	Ferrous slags I-2 (ironmaking-2: physicochemical properties of ironmaking slag)	Ferrous slags II-2 (steelmaking-2: refining slags in HMP, BOF, EAF)	
18:00-19:00	Break	Ferrous slags II-3 (steelmaking-3: secondary	Characterization of slags I (in-situ observation)
19:00-20:00		refining and steel quality) (90min)	Break
20:00-21:00	Ferrous slags III-1 (inclusion-1: clean steel practice)	Break	Electrochemical processing and molten salts I (molten salts for REM recovery)
21:00-22:00	Ferrous slags III-2 (inclusion-2: inclusion control by slag)	Kinetics I (multiphase reaction kinetics)	Electrochemical processing and molten salts II (molten salts for metal production)

	February 25 (Thursday)				
16:00-17:00	Ferrous slags IV-1 (mold flux-1: mold fluxes for high Al-steels)	Refractories I (refractory-slag reaction)			
17:00-18:00	Ferrous slags IV-2 (mold flux-2: mold flux fundamentals)	Break			
18:00-19:00	(90min)	Energy and environments I (energy recovery and environmental protection)			
19:00-20:00		Recycling and sustainability I (sustainable utilization of slag and refractory)			
20:00-21:00		Recycling and sustainability II (slag valorization and processing for higher values)			
21:00-22:00	Ash and weld fluxes I (coal ash)	Recycling and sustainability III (novel processing of co-products)			

Award & Event

MOLTEN 2021 Young Slag Scientist Award

Posters are judged by reviewers of the MOLTEN 2021 and consideration is given to scientific rigour, contribution to the field, relevance to the conference theme and overall presentation. All posters will be eligible for this award provided they meet the requirements listed below:

- The presentations should consist of well-prepared visual materials about the research.
- Selections will be based on the level of the research, quality of the poster and clarity of the presentation.

Join Exciting Events and Win Prizes

Be the Most Viewed Presenter

- · Oral and poster presentations win the event.
- · Take a chance to grab a total prize of USD 100.
- The number of clicks is limited to one per day with the same IP.
- · Winners will be announced on the website after the conference.

Share Your Moment with Us

- · Take any pictures or selfie during your participation in the conference.
- · You can post a picture through the event board on our virtual page.
- · Winners will be announced on the website after the conference.

International Participants | \$30

STARBUCKSCARD Korean Participants | KRW 30,000

INTRODUCING OUR NEW PLATFORM

We are excited about our virtual platform and the experience it will provide. The new platform is sure to make the conference a remarkable experience.

Virtual Platform Access

- Participants who have completed registration can only access the virtual page with the registered login information.
- Click "Virtual conference" on the main page of the website (www.molten2020.org) to access the virtual page.

Sneak Peek of Virtual Platform

Our virtual website will help you have the best experience at MOLTEN 2021.

Join the live streaming opening ceremony and participate in live discussion sessions.

to the second se

With a single click, you can find any presentations you want to watch.

Post a picture to share your moment and create memories at MOLTEN 2021

Best way to extend your marketing reach worldwide.

Watch recent research from researchers and engineers around the world to enrich your knowledge and share ideas in the field of Molten Slags, Fluxes and Salts!

KEY SPEAKERS

Plenary Speakers

Structure of Aluminosilicate Melts

Solid Oxide Membrane-Based Technologies for Energy and Environmental Sustainability

The Structure and Properties of Molten Oxide Slags

Advancing Metallurgical Frontier through Slag Physical Chemistry

Keynote Speakers

Antoine ALLANOREMassachusetts Institute of Technology,
USA

Melts Electrochemistry: Theoretical and Experimental Insights

Mansoor BARATIUniversity of Toronto, Canada

Cold Fluid Physical Modeling of Air Blast Slag Atomization

Chenguang BAIChongging University, China

Some Aspects on the Viscosity of the Slag Containing Titanium Oxide

Bart BLANPAIN

Katholieke Universiteit Leuven, Belgium

Slag Engineering and Valorization in the Framework of Sustainable Metallurgy

Jung Wook CHO

Pohang University of Science and Technology, Korea

Mold Flux for High Aluminium Containing Steels

Geoffrey BROOKS

Swinburne University of Technology, Australia

Towards a More Comprehensive Understanding of Slag Chemistry

Kuo-Chih CHOU

University of Science and Technology Beijing, China

New Progress in Calculating Physicochemical **Properties from Limited Solubility Systems**

Kenneth COLEY

Western University, Canada

Kinetics of MnO Reduction from Slag; Comparison of Carbon and Silicon as Reductants

Yongsug CHUNG Korea Polytechnic University, Korea

Dissolution Phenomena of

Refractory Raw Materials in Liquid Slags

Sichen DU KTH Royal Institute of Technology, Sweden

The Laboratory Study of Metallurgical Slags and the Reality

Geir Martin **HAARBERG**

Norwegian University of Science and Technology, Norway

Electrodeposition of Silicon from Molten Salt **Electrolytes**

Timo FABRITIUS

University of Oulu, Finland

Physico-chemical Properties of Slag in Different Stages of Its Life Cycle - Case Studies from Recent Slag Research

Peter HAYES

The University of Queensland, Australia

Solidification of Oxide Melts

Ryo INOUE

Akita University, Japan

Control of Hydration of Free Magnesia in Steelmaking Slag

Lauri **HOLAPPA**

Aalto University School of Chemical Engineering, Finland

A Review of Circular **Economy Prospects for** Stainless Steelmaking Slags

Youn-Bae KANG Pohang University of Science and Technology, Korea

Progress of Thermodynamic

Modeling for Sulfide Dissolution in Molten Oxide

Slags: Model Development,

Interpretation, and

In-Ho JUNG

Seoul National University, Korea

Challenges in the Phase Diagram Study of Alkali **Oxide Systems**

Sung Mo JUNG Pohang University of Science and Technology, Korea

Formation and Reduction of NO from Nitrogen in the Combustion of the Fuels Used in the Sintering Process of Iron Ore

Joonho LEE *Korea University, Korea*

Role of Hydrogen Gas in Blast Furnace Operation - Improved Wettability of Carbon by Molten Slag

Sung Keun LEE

Seoul National University, Korea

Structure of Molten Oxides and Glasses above Megabar Pressures: Insights from High-resolution Solid-state NMR and Inelastic X-ray Scattering

JongHyeon Lee

Chungnam National University, Korea

Alternative Way of Producing Rare Metals by a Molten Salt Based Process of Oxide Feedstocks

Jean LEHMANN ArcelorMittal Global R&D - Maizières-

lès-Metz, France

Development of a Slag Model to Better Understand and Control Steelmaking Processes

Lev Medovar

National Academy of Science of Ukraine, Ukraine

Slag Metallurgy for Steel (on the Base of Electro Slag Refining and Remelting Process)

Zushu LI

University of Warwick, UK

BOS Slag: Formation, Reaction and Energy/ Materials Recovery

Kazuki MORITA

The University of Tokyo, Japan

Thermodynamics on Slag Refining of Molten Si and Si-based Alloys

Recycling of Critical

Metals by Utilizing Molten Salt

Toru H. OKABE

The University of Tokyo, Japan

Viswanathan N. NURNI

Indian Institute of Technology Bombay, India

Static Liquid Holdup in the **Blast Furnace Dripping** Zone - A Fundamental Study

Joo Hyun PARK

Hanyang University, Korea

Physicochemical **Properties of Slags for** Improvement of Steel Cleanliness; Case Studies of LF, RH and Tundish Conditions

Oleg OSTROVSKI University of New South Wales. Australia

Challenges in the Mould Flux Design

Jong-Jin PAK Hanyang University, Korea

Formation of Nitride and Oxide Inclusions in Ferritic Stainless Steel Melts

P. Chris PISTORIUS

Carnegie Mellon University, USA

Critical Issues in the Kinetics of Steel-slaginclusion Reactions

Ramana G. REDDY

The University of Alabama, USA

Sulfide Capacities of Steel Making Slags

Eugene PRETORIUS

Nucor Steel, USA

The Role of Transient Slags in Steelmaking

Gudrun SAEVARSDOTTIR

Reykjavik University, Iceland

Reducing the Carbon
Footprint: Primary Production
of Aluminum and Silicon
Metal with Changing Energy
Systems and the Risk of
Carbon Leakage

Johannes SCHENK

Montanuniversität Leoben, Austria

Processing and Utilization of Steelmaking Slags in the European Union

Mario SANCHEZ

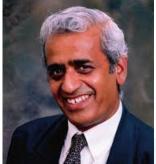
Universidad Andrés Bello, Chile

Use of Copper Slag for Iron Alloys Fabrication. A Circular Economy Approach for the Chilean Metallurgical Industry

Seshadri **SEETHARAMAN**

KTH Royal Institute of Technology, Sweden

Some Recycling Aspects of Molten Slags, Fluxes and Salts



Hiroyuki SHIBATA

Tohoku University, Japan

Thermophysical **Properties of Silicate Melts** and Glasses

Dieter SENK

RWTH Aachen University, Germany

Process Concept for the Dry Recovery of Thermal Energy of Liquid Ferrous Slags

II SOHN

Yonsei University, Korea

Perspectives of Slag "Co-product" Zero Waste **Full Utilization**

Norwegian University of Science and

Slag Properties in the **Primary Production Process of Mn-ferroalloys**

Merete TANGSTAD

Technology, Norway

Ryosuke O. SUZUKI

Metal Production after

Hokkaido University, Japan Sulfurization of Oxide

Xinhua WANGShougang Group Co., Ltd., China

Investigation on the Slag for Production of Extra-Low P Steels by "Slag-Remaining + Double-Slag" BOF Steelmaking Process

Sangho YI
POSCO, Korea

A Novel Process for the Smelting Reduction of Silicate Fluxed Chromite Ore Fines using FINEX® Platform Technology

Wanlin WANGCentral South University, China

Development of Non-reactive Mold Flux for the Casting of AHSS

Enno ZINNGREBE

Tata Steel Europe, Netherlands

Steel-sidewall Interfaces in a Steel Continuous Caster: An Interconnected System of Reaction Sites

PRESENTATION LIST

Ferroalloys slags I

manganese ferroalloys slags

P-1036 Modelling Si-Furnace Operational Conditions

<u>Gudrun SAEVARSDOTTIR</u>¹, Merete TANGSTAD², Thordur MAGNUSSON³, Yonatan TESFAHUNEGN¹

¹Reykjavik University, Iceland, ²Norwegian University of Science and Technology, Norway, ³Stakksberg, Iceland

P-0249 Foaming of Silicomanganese Slag during Carbothermic Reduction

<u>Vincent CANAGUIER</u>, Merete TANGSTAD

Norwegian University of Science and Technology, Norway

P-0907 Formation of Carbides, TiC and SiC in Industrial Production of SiMn Alloys

<u>Eli RINGDALEN</u>, Kai TANG SINTEF Industry, Norway

P-0330 Slag Properties in the Primary Production Process of Mn-Ferroalloys

KEYNOTE Merete TANGSTAD

Norwegian University of Science and Technology, Norway

P-0308 Investigation of Liquid Slag-Metal Behaviour at Elevated Temperature: Interaction between Liquid FeMn Slag and Liquid FeMn Metal

<u>Sarina BAO</u>¹, Martin SYVERTSEN¹, Merete TANGSTAD², Morten ONSØIEN¹, Kristian Etienne EINARSRUD², Sergey BUBLIK²

¹SINTEF Industry, Norway, ²Norwegian University of Science and Technology, Norway

P-0440 Molten Ferromanganese Slag Production from Mn-ores

<u>Tichaona MUKONO</u>, Maria WALLIN, Merete TANGSTAD Norwegian University of Science and Technology, Norway

Ferroalloys slags II

physicochemical properties of ferroalloys slags

P-0972 A Novel Process for the Smelting Reduction of Silicate Fluxed Chromite Ore Fines Using FINEX® KEYNOTE Platform Technology

Sangho YI, Youngseuk LEE, Hyunsoo KIM POSCO, Korea

Thermodynamic Analysis of Sulfur in Slag and Alloy Melt Produced from Spent Catalyst in P-1414 Petroleum Refinery

Jong-Jin PAK¹, Geon-Woo KIM¹, Min-Kyu PAEK², Yong-Dae KIM³ ¹Hanyang University, Korea, ²Aalto University, Finland, ³Golden River Co., Korea

P-0201 Influence of Sulphur on the Interfacial Behaviour between FeMn Alloy-Slag and SiMn Alloy-Slag

Sergey BUBLIK¹, Sarina BAO² Merete TANGSTAD¹, Kristian Etienne EINARSRUD¹ Norwegian University of Science and Technology, Norway, ²SINTEF Industry, Norway

P-0127 Formation of Slag in Si and FeSi Furnaces

Marit Buhaug FOLSTAD¹, Merete TANGSTAD¹, Eli RINGDALEN² ¹Norwegian University of Science and Technology, Norway, ²SINTEF Industry, Norway

P-0530 The Production of Pig Iron and Calcium Aluminate Slags for Alumina Recovery from Bauxite Ore

Adamantia LAZOU¹, Casper Van Der EIJK², Leiv KOLBEINSEN¹, Jafar SAFARIAN¹ ¹Norwegian University of Science and Technology, Norway, ²SINTEF Industry, Norway

Physicochemical properties of slags I

viscosity

) Slag

<u>Tae Sung KIM</u>, Joohyun PARK *Hanyang University, Korea*

P-0366 Some Aspects on the Properties of the Slag Containing Titanium Oxide

KEYNOTE Kai HU, <u>Chenguang BAI</u>, Muhammad SAJID, Wenzhou YU, Zhiming YAN, Min TAN Chongqing University, China

P-0252 The Viscous Behavior of High FeO-bearing Slag Melts Considering Polymeric Unit of Slags

<u>Joon Sung CHOI</u>, Dong Joon MIN *Yonsei University, Korea*

P-0132 Relation between Local Structure Environment of Iron Ions and Iron Oxide Activities in the Na₂O-SiO₂-FeO-Fe₂O₃ Slags

<u>Miyuki HAYASHI</u>¹, Kenya HORITA², Rie ENDO¹, Takashi WATANABE¹, Masahiro SUSA¹ ¹Tokyo Institute of Technology, Japan, ²JFE Steel Corporation, Japan

P-0235 Physical Properties of Blast Furnace Slag with Full-Ratio V-Ti-Magnetite

Zhengde PANG¹, Xuewei LV¹, Yuyang JIANG¹, Zhiming YAN², Jiawei LING¹

¹Chongqing University, China, ²University of Warwick, United Kingdom

Physicochemical properties of slags II

physical property and structure characterization

P-0266 Thermophysical Properties of Silicate Melts and Glasses

KEYNOTE <u>Hiroyuki SHIBATA</u>¹, Sohei SUKENAGA¹, Tsuyoshi NISHI², Hiromichi OHTA²

¹Tohoku University, Japan, ²Ibaraki University, Japan

P-1108 Structure of Molten Oxides and Glasses above Mega-Bar Pressures: Insights from High-Resolution

KEYNOTE Solid-State NMR and Inelastic X-Ray Scattering

<u>Sung Keun LEE</u> Seoul National University, Korea

P-0683 The Extent of Disorder in Iron-bearing NaAlSi₃O₈ and CaAl₂Si₂O₈ Glasses: Multi-Nuclear (²⁹Si, ²⁷Al, and ¹⁷O) Solid-State NMR Study

<u>Hyo-Im KIM</u>, Sung Keun LEE Seoul National University, Korea

P-0226 Effects of Atmosphere and Melting Time on Surface Tension of Iron Silicate Melt

Sohei SUKENAGA¹, Sakiko KAWANISHI¹, Masahito UCHIKOSHI¹, Shingo ISHIHARA¹, Shungo NATSUI¹, Ko-Ichiro OHNO², Noritaka SAITO², Kunihiko NAKASHIMA², Masanori TASHIRO¹, Hiroyuki SHIBATA¹ Tohoku University, Japan, ²Kyushu University, Japan

P-0890 Thermal Conductivity Model of the Oxide Melt

<u>Taehyoung KIM</u>, In-Ho JUNG Seoul National University, Korea

P-1010 Thermal Conductivity Measurements of Solid Mattes Containing Fe-S-Ni-Cu-Co from 100-450°C

Rodney HUNDERMARK¹, Lloyd NELSON¹, Bruce BERGER²
¹Anglo American, South Africa, ²Cermalab, South Africa

Physicochemical properties of slags III

multiphase crystallization

P-0261 Characterization of Secondary Phases Dispersed in Molten Slags Utilizing Alternative Current Field

Noritaka SAITO, Kunihiko NAKASHIMA Kyushu University, Japan

P-0704 Solidification of Oxide Melts

KEYNOTE Peter HAYES, Stuart NICOL, Eugene JAK

The University of Queensland, Australia

P-0451 Investigation on Crystallization of Steelmaking Slag and Mould Fluxes

Oifena SHU^{1,2}, Timo FABRITIUS¹

¹University of Oulu, Finland, ²University of Sceience and Technology Beijing, China

P-1129 Effect of TiO₂ and SiO₂ on the Crystal Morphology CaF₂-Al₂O₃-CaO Base Electroslag Remelting Slags

Ronghuan XU, <u>Jing GUO</u>, Hanjie GUO, Dongfeng LIU *University of Science and Technology Beijing*, *China*

P-0580 Effect of Crystallization on the Electrical Conductivity of CaO-Al₂O₃-SiO₂-MgO Slag under Isothermal Condition

Ling ZHANG, Annelies MALFLIET, Bart BLANPAIN, Muxing GUO Katholieke Universiteit Leuven, Belgium

P-1139 A Method to Identify the Kinetics of Solid-Phase Growth during Slag Isothermal Crystallisation

Alexander ILYUSHECHKIN¹, Chong HE^{1,2}, <u>Alex KONDRATIEV</u>³, San Shwe HLA¹

¹Commonwealth Scientific and Industrial Research Organisation, Australia, ²Institute of Coal Chemistry, Chinese Academy of Sciences, China, ³The National University of Science and Technology MISIS, Russia

Physicochemical properties of slags IV

application to steelmaking

P-0899	Influences of DRI Additi	on and Bubble Size	es on the Foaming	Behavior of EAF	Slags
--------	--------------------------	--------------------	-------------------	-----------------	-------

Won Yeong SON, Seong-Hoon KEE, Youngjo KANG Dong-A University, Korea

P-0198 The Laboratory Study of Metallurgical Slags and the Reality

KEYNOTE <u>Du SICHEN</u>^{1,2}, Joar HUSS¹, Amanda VIKERFÄLT^{1,3}, Martin BERG¹, Johan MARTINSSON⁴, Carl ALLERTZ⁴, Niklas KOJOLA²

¹KTH Royal Institute of Technology, Sweden, ²HYBRIT, Sweden, ³Swerim AB, Sweden, ⁴SSAB, Sweden

P-0696 Optimization of Slag Composition for Efficient Dephosphorization and Slag Foamability

<u>Jungho HEO</u>^{1,2}, Joohyun PARK²

¹LS-Nikko Copper Inc., Korea, ²Hanyang University, Korea

P-0208 Physico-Chemical Properties of Slag in Different Stages of Its Life Cycle – Case Studies from Recent

KEYNOTE Slag Research

<u>Timo FABRITIUS</u>, Eetu-Pekka HEIKKINEN, Qifeng SHU, Ville-Valtteri VISURI *University of Oulu, Finland*

P-0582 Interaction Behavior of Biocarbon with Electric Arc Furnace Slag

<u>Xianai HUANG</u>, Ka Wing NG, Louis GIROUX, Marc DUCHESNE, Nicole BOND Natural Resources Canada, Canada

Non-ferrous slags I

phase equilibria of Cu smelting slag

P-0186 Thermodynamic Behavior of Industrial Copper Production Slag Saturated with Copper and Iron <u>Eric KLAFFENBACH</u>^{1,2}, Sina MOSTAGHEL¹, Muxing GUO², Bart BLANPAIN²

'Aurubis AG, Germany, ²Katholieke Universiteit Leuven, Belgium

P-0887 Characterisation of Complex Systems through Integrated Experimental and Thermodynamic Modelling Research for Pyrometallurgical Processing

<u>Evgueni JAK</u>, Maksym SHEVCHENKO, Denis SHISHIN, Peter HAYES The University of Queensland, Australia

P-0768 Experimental Investigation of Phase Equilibria in the "CuO_{0.5}"- MgO - SiO₂ System in Equilibrium with Liquid Cu Metal

<u>Hamed ABDEYAZDAN</u>, Maksym SHEVCHENKO, Evgueni JAK The University of Queensland, Australia

P-0731 Experimental Study of Slag/Matte/Metal/Tridymite Phase Equilibria in the Cu-Fe-O-S-Si System at 1200 °C

<u>Svetlana SINEVA</u>, Denis SHISHIN, Maksym SHEVCHENKO, Peter HAYES, Evgueni JAK *The University of Queensland, Australia*

P-0797 The Effect of MgO on High-Alumina Iron Silicate Slag - Spinel Equilibrium in Secondary Copper Smelting

Anna DANCZAK, Lassi KLEMETTINEN, Pekka TASKINEN, Daniel LINDBERG, Ari JOKILAAKSO Aalto University, Finland

Non-ferrous slags II

industrial applications

P-0303 Mechanical Copper Entrainment Related to Solid Phases within Smelting Slags

<u>Lassi KLEMETTINEN</u>, Anna DANCZAK, Ari JOKILAAKSO, Pekka TASKINEN *Aalto University, Finland*

P-0785 Pilot Scale Powder Injection Practice for Metal Recovery from Copper Slag

<u>Seung Hwan AHN</u>, Kyu Yeol KO, Jongshin CHANG *LS-Nikko Copper Inc., Korea*

P-0892 Development of Mitsubishi C-Furnace Simulation Model for Cu Converting Process and Its Industrial Applications

Soo Sang PARK¹, Ho-Sang SOHN², Marie-Aline VAN ENDE³, In-Ho JUNG³

1LS-Nikko Copper Inc., Korea, ²Kyungpook National University, Korea, ³Seoul National University, Korea

P-1011 Behaviour of Silver and Molybdenum, as Minor Elements, during the Controlled Cooling Treatment of Copper Smelting Slag for Further Grinding and Froth Flotation

<u>Camila PIZARRO</u>, Leandro VOISIN, Julio OSSANDON *University of Chile, Chile*

P-0919 Phase Relations and Evolution of Gangue Minerals in the Black Top of a PGM Smelter

<u>Oscar RIVERA LI KAO</u>, Andrie GARBERS-CRAIG University of Pretoria, South Africa

P-0312 A Qualitative Study on Matte/Slag/Copper Interactions with Water/MEG

<u>Tijl CRIVITS</u>, Thomas SUETENS, Lawrence BILLINGTON, Ans GOSSELÉ, Jonathan PELGRIMS, Tom HENNEBEL *Umicore, Belgium*

Ferrous slags I-1

ironmaking-1: iron ore reduction and slag formation

P-0164 Role of Hydrogen Gas in Blast Furnace Operation - Improved Wettability of Carbon by Molten Slag KEYNOTE Joonho LEE¹, Joon Seok OH², Mintae KIM¹, Dereie DEGEFA GELETA¹

¹Korea University, Korea, ²Hyundai Steel, Korea

P-0184 Characterization of Slag Formed by Melting DRI Phase Relationship Phosphorus Partition and Vanadium Partition

Amanda VICKERFÄLT, Oscar HESSLING, Johan MARTINSSON, Hedda POUSETTE, Du SICHEN KTH Royal Institute of Technology, Sweden

P-0400 Comparison on Transient Shrinkage Behavior of Ternary-Component Slags in CO/H₂ Atmosphere under Simulated Blast Furnace Cohesive Zone Conditions

<u>Junyi DENG</u>, Kaihui MA, Liangying WEN, Jian XU Chongqing University, China

P-0802 Effect of Melt Formation and Pore Structure on Reduction Rate of Iron Ore Sinter

<u>Kengo KATO</u>¹, Hirokazu KONISHI¹, Hideki ONO², Shinji FUJIMOTO¹
¹Osaka University, Japan, ²University of Toyama, Japan

P-0340 Effect of Fluxing in the Iron Ore Pellets on the Capacity of Phosphorus Removal of the Self-Formed Slag by DRI Melting

<u>Oscar HESSLING</u>¹, Magnus TOTTIE², Amanda VICKERFÄLT¹, Johan MARTINSSON³, Niklas KOJOLA³, Du SICHEN¹

¹KTH Royal Institute of Technology, Sweden, ²Luossavaara-Kiirunavaara Aktiebolag, Sweden, ³SSAB Oxelösund. Sweden

P-0506 Numerical Investigation of Slag Flow through a Coke Funnel and Packed Bed

<u>Xue Feng DONG</u>¹, Apsara JAYASEKARA¹, Dominique SERT², Pascal GARDIN², Paul ZULLI¹, Brian MONAGHAN¹ *University of Wollongong, Australia*, ²*ArcelorMittal, France*

Ferrous slags I-2

ironmaking-2: physicochemical properties of ironmaking slag

P-0517 Static Liquid Holdup in the Blast Furnace Dripping Zone – a Fundamental Study

KEYNOTE Snigdha GHOSH, Akhilandeswari ERRAM, <u>Viswanathan Neelakantan NURNI</u>, Bharath N BALLAL Indian Institute of Technology Bombay, India

P-0159 Effect of Coal and Coke Ash on Blast Furnace Slag Formation – Comparison between PCI, Charcoal, Fossil-based Coke and Bio-Coke

Anne HEIKKILÄ, Mikko ILJANA, Eetu-Pekka HEIKKINEN, Aki KOSKELA, Timo FABRITIUS University of Oulu, Finland

P-0212 An Innovation Slag System for High Alumina Iron Ore in Blast Furnace Process

Zhiming YAN, <u>Xuewei LV</u>, Zhengde PANG, Chenguang BAI Chongqing University, China

P-1314 The Properties of Low MgO Slag in the Actual Blast Furnace Operation

<u>Dong-Geun KIM¹</u>, Hyuk KIM¹, Ho Jun YOON¹, Dong Joon MIN² ¹Hyundai Steel, Korea, ²Yonsei University, Korea

P-0156 Evaluation of Evaporation Kinetics of Potassium from Synthetic Blast Furnace Slag Using Full Factorial Design of Experiments

Anton ANDERSSON¹, Hesham AHMED^{1,2}, Lena SUNDQVIST ÖKVIST^{1,3}, Bo BJÖRKMAN¹

¹Luleå University of Technology, Sweden, ²Central Metallurgical Research and Development Institute, Egypt,

³Swerim AB, Sweden

P-0456 Perovskite Formation Mechanism in Hematite-Ilmenite Ore Sinter Blend in Argon Atmosphere by In-situ X-Ray Diffraction

Edson Kugara CHIWANDIKA, Sung-Mo JUNG Pohana University of Science and Technology, Korea

P-1158 The Relationship between Viscosity and Sulfide Capacity of BF Slag

Sunghee LEE¹, Dong Joon MIN²

¹POSCO, Korea, ²Yonsei University, Korea

Ferrous slags II-1

steelmaking-1: primary steelmaking slag

P-0358 Towards a More Comprehensive Understanding of Slag Chemistry

KEYNOTE Geoffrey BROOKS, Akbar RHAMDHANI, Mohammad HASAN
Swinburne University of Technology, Australia

P-0941 Modeling Study on the Dynamic Evolution of Slag Foaming

<u>Ruifang WANG</u>, Bo ZHANG, Chao HU, Chengjun LIU, Maofa JIANG Northeastern University, China

P-0329 Assessment of the Application Possibilities of Foaming Index on Industrial BOF Process Data

Lotte DE VOS¹, Inge BELLEMANS¹, Carina VERCRUYSSEN², Kim VERBEKEN¹

Ghent University. Belaium. ²ArcelorMittal. Belaium

P-0192 The Impact of Solid Particles on Foams – Cold Model and High Temperature Experiments

<u>Johan MARTINSSON</u>, Amanda VICKERFÄLT, Du SICHEN KTH Royal Institute of Technology, Sweden

P-0262 BOS Slag: Formation, Reaction, and Energy and Materials Recovery

KEYNOTE Zushu Ll¹, Juncheng Ll², Stephen SPOONER¹, Seetharaman SRIDHAR³

¹University of Warwick, United Kingdom, ²Jiangsu University, China, ³Colorado School of Mines, USA

P-0375 Evaluation of Dissolution Rate and Behaviour of MgO Carriers for Primary and Secondary Metallurgical Slag

<u>Elizaveta CHEREMISINA</u>¹, Johannes SCHENK², Roland NILICA³, Andreas VIERTAUER³, Roman ROESSLER⁴

¹K1-MET GmbH, Austria, ²Montanuniversität Leoben, Austria, ³RHI Magnesita, Austria, ⁴Voestalpine Stahl GmbH. Austria

Ferrous slags II-2

steelmaking-2: refining slag in HMP, BOF, EAF

P-0956 How to Design Hot Metal Desulphurisation Slag with a High Sulphur Capacity and Low Iron Entrapment?

<u>Frank N. H. SCHRAMA</u>^{1,2}, Elisabeth M. BEUNDER¹, Sourav Kumar PANDA¹, Elmira MOOSAVI-KHOONSARI¹, Rob BOOM², Jilt SIETSMA², Yongxiang YANG²

¹Tata Steel Europe, Netherlands, ²Delft University of Technology, Netherlands

P-0896 Improved Hot Metal Desulphurisation Performance through Intelligent Use of Slag Conditioner

<u>Raj Kumar YADAV</u>¹, Smriti KIRAN¹, Sarbendu SANYAL¹, Madan Mohan MAHATO¹, Satyamjee ANAND¹, Akhilesh MISHRA²

¹JAMIPOL, India, ²Tata Steel, India

P-0200 Investigation on the Slag for Production of Extra-Low P Steels by "Slag-Remaining + Double-Slag

KEYNOTE BOF Steelmaking Process

Xinhua WANG, Yanchun LU Shougang Group Co., Ltd., China

P-0780 How Does Solid Phase Precipitation Affect the Evolution of Phosphorus Removal during the BOF Process? Thermochemical and Industrial Aspects

<u>Sabrine KHADHRAOUI</u>¹, Klaus HACK², Norbert UEBBER¹, Wilfried KLOS¹

'SMS group GmbH, Germany, ²GTT-Technologies, Germany

P-0498 A Technology of Slag Making for Dephosphorization in Molten Steel during De-P Converter Process

<u>Jea-Bok CHOI</u>¹, Kwang-Chun KIM¹, Yong-Jung LEE¹, Chang-Keun YOO¹, Youn-Bae KANG²

¹POSCO, Korea, ²Pohang University of Science and Technology, Korea

P-0113 Effect of Fluorspar on Dephosphorization Efficiency and Refractory Corrosion in EAF Process Using Dirct Reduced Iron (DRI)

Minkyo OH, Joohyun PARK Hanyang University, Korea

Ferrous slags II-3

steelmaking-3: secondary refining and steel quality

P-0738 Improvement of Desulfurization Efficiency by the Submaterial Addition in the Shaft Type EAF

Jungmin YOO^{1,2}, Younghwan KIM¹, Jeongwhan HAN²
¹Donakuk Steel, Korea, ²Inha University, Korea

P-0652 Effect of Industrial Wastes on Desulfurization Behavior of Molten Steel

<u>Tae Su JEONG</u>, Tae Sung KIM, Joohyun PARK *Hanyang University, Korea*

P-0534 Thermo-Calc's TCOX10 database & Process Metallurgy Module

<u>A. Nicholas GRUNDY</u>, Lina KJELLQVIST, Rui ZHANG, Qing CHEN, Ralf RETTIG, Johan JEPPSSON, Johan BRATBERG

Thermo-Calc Software AB, Sweden

P-0817 Thermochemical Process Simulations Using the Connected Local Equilibria Method – Applying SimuSage and ChemApp to Model Slag Behavior in Metallurgical Processes

<u>Stephan PETERSEN</u>¹, Moritz TO BABEN¹, Klaus HACK¹, Peter MONHEIM¹, Tanai MARIN-ALVARADO², Kevin HEPPNER³

¹GTT-Technologies, Germany, ²XPS Expert Process Solutions, Canada, ³SysCAD Canada, Canada

P-0170 Chromium Spinel Formation in Stainless Steel Slag

<u>Jaka BURJA</u>, Barbar ŠETINA BATIČ <u>Institute of Metals and Technology. Slovenia</u>

P-1163 Numerical Modelling of AOD Slag Structure during Cooling

<u>Ville-Valtteri VISURI</u>, Eetu-Pekka HEIKKINEN, Aki KÄRNÄ, Petri SULASALMI, Timo FABRITIUS *University of Oulu, Finland*

P-0560 Improvement of High Quality of the New Mold Steel by ESR

D. K. JANG, J. H. KIM, S. H. OH, J. W. KWON, Y. D. KWON, S. H. AHN, S. K. LEE, M. G. KWON SeAH Chanawon Integrated Special Steel, Korea

P-0796 Slag Metallurgy for Steel (On the Base of Electro Slag Refining and Remelting Process)

KEYNOTE Lev MEDOVAR¹, Ganna STOVPCHENKO^{1,2}

¹E. O. Paton Electric Welding Institute of National Academy of Science of Ukraine, Ukraine, ²Engineering Company, Ukraine

P-0678 Steel-Sidewall Interfaces in a Steel Continuous Caster: an Interconnected System of Reaction Sites

KEYNOTE Enno ZINNGREBE

Tata Steel Europe, Netherlands

Ferrous slags III-1

inclusion-1: clean steel practice

P-0436 The Spontaneous Emulsification of Entrained Inlcusions during Casting of High Aluminium Steels

<u>Akalya RAVIRAJ</u>¹, Stephen SPOONER¹, Nadia KOURRA¹, Mark WILLIAMS¹, Gert ABBEL², Claire DAVIS¹, Wouter TIEKINK², Sridhar SEETHARAMAN³

¹University of Warwick, United Kingdom, ²Tata Steel Europe, Netherlands, ³Colorado School of Mines, USA

P-0553 Effect of Ladle Glaze on the Evolution of Non-Metallic Inclusions during LMF Operation

Shengqiang SONG^{1,2}, <u>Deepoo KUMAR^{2,3}</u>, Jialiu LEI⁴, Zhengliang XUE¹, Petrus Christiaan PISTORIUS²

¹Wuhan University of Science and Technology, China, ²Carnegie Mellon University, USA, ³Indian Institute of Technology Bombay, India, ⁴Hubei Polytechnic University, China

P-0668 Formation of Nitride and Oxide Inclusions in Ferritic Stainless Steel Melts

KEYNOTE Min-Kyu PAEK¹, Jong-Jin PAK²

¹Aalto University, Finland, ²Hanyang University, Korea

P-1277 Optimization the Slag Composition for Cleanliness in Ultra Low Carbon Steel

<u>Geun-Ho PARK</u>¹, Jaehong SHIN¹, Haigon KIM¹, Chulho CHANG¹, Joohyun PARK²

¹Hyundai Steel, Korea, ²Hanyang University, Korea

P-0131 The Role of Transient Slags in Steelmaking

KEYNOTE <u>Eugene PRETORIUS</u>

Nucor Steel, USA

P-1416 A Comprehensive Investigation of Oxide Particles Dissolution in the Metallurgical Slag: an Overview of In-Situ Observation Experiments and Theoretical Studies

Wangzhong MU¹, Changji XUAN², Neslihan DOGAN³, Joo Hyun PARK^{1,4}

¹KTH Royal Institute of Technology, Sweden, ²Sandvik Machining Solutions AB, Sweden, ³McMaster University, Canada, ⁴Hanyang University, Korea

P-0485 Dissolution Rate of Al₂O₃ Inclusion into CaO-Al₂O₃-Fe₁O-MgO-SiO₂ Slag System and Its Kinetic Analysis

Youngjoon PARK¹, Yong-Min CHO¹, Woo-Yeol CHA², Youn-Bae KANG¹ Pohana University of Science and Technology, Korea. ²POSCO, Korea

Ferrous slags III-2

inclusion-2: inclusion control by slag

P-0598	Effect of Medium Basicity Refining Slag on the Cleanliness of High Grade Hot Rolled Steel
	<u>Huixiang YU</u> , Xinhua WANG, Jing ZHANG, Guangyuan QIU, Min JIANG

University of Science and Technology Beijing, China

P-0503 Influence of Slag Properties on the Behavior of Nonmetallic Inclusions

<u>Dali YOU</u>, Katharina KIRCHHEIMER, Susanne(Katharina) MICHELIC, Christian BERNHARD *Montanuniversität Leoben. Austria*

P-0526 Physicochemical Properties of Slags for Improvement of Steel Cleanliness; Case Studies of LF, RH

KEYNOTE and Tundish Conditions

Taesung KIM, <u>Joohyun PARK</u> *Hanyang University, Korea*

P-1261 Effect of CaO/Al₂O₃ Ratio of the Slag on the Formation Behavior of Inclusions in the Al Killed Molten Steel

<u>Jaehong SHIN</u>¹, Geun-Ho PARK², Chulho CHANG², Haigon KIM², Joohyun PARK³
¹Korea Institute of Industrial Technology, Korea, ²Hyundai Steel, Korea, ³Hanyang University, Korea

P-1101 Critical Issues in the Kinetics of Steel-Slag-Inclusion Reactions

KEYNOTE Stephano PIVA, Deepoo KUMAR, Dai TANG, <u>Petrus Christiaan PISTORIUS</u> *Carnegie Mellon University, USA*

P-1055 Evolution of Non-Metallic Inclusions Due to Slag/Metal Reactions in Highly Alloyed Steels

<u>Bryan WEBLER</u>, Andrew HUCK Carnegie Mellon University, USA

P-0959 Study on Inclusion Composition during Ladle Refining Process of Tire Cord Steel

<u>Gobinath RAJAVEL</u>, Ravindran RAMAR *JSW Steel Ltd Salem. India*

Ferrous slags IV-1

mold flux-1: mold fluxes for high Al-steels

P-1132 Mold Flux for High Aluminium Containing Steels

KEYNOTE Sung-Hee HYUN, <u>Jung-Wook CHO</u>

Pohana University of Science and Technology, Korea

P-0351 Prediction of Al₂O₃ Content in Mold Flux during Continuous Casting

<u>Kenji TSUZUMI</u>, Shuhei IRIE, Akitoshi MATSUI, Naoki KIKUCHI *JFE Steel Corporation, Japan*

P-0602 Development of Non-reactive Mold Flux for the Casting of Advanced High Strength Steels

KEYNOTE Bingyu ZHAI, <u>Wanlin WANG</u>, Lei ZHANG Central South University, China

P-0394 Effect of Na₂O on Properties and Structure of CaO-Al₂O₃-Based Mould Fluxes

Qi WANG¹, Jianqiang ZHANG¹, Chen ZHANG², Dexiang CAl², Oleg OSTROVSKI¹

¹The University of New South Wales, Australia, ²Baosteel Co., Ltd., China

P-0242 Investigation of Calcium Aluminate based Mold Slag Compositions

Irmtraud MARSCHALL¹, Harald HARMUTH²

¹K1-MET GmbH, Austria, ²Montanuniversität Leoben, Austria

P-0612 Investigation on Properties of Mold Fluxes during Continuous Casting of High-Al Containing Electrical Steels

Jun-Yong PARK POSCO, Korea

Ferrous slags IV-2

mold flux-2: mold flux fundamentals

P-0118 New Mold Slag Compositions for the Continuous Casting of Soft Steels

Nathalie KÖLBL

Montanuniversität Leoben, Austria

P-0219 Effect of Li₂O on the Crystallization of Fluorosilicate Glass and Molecular Dynamics Simulation Analysis

<u>Tae-min YEO</u>, Jin-Myoung JEON, Jung-Wook CHO *Pohang University of Science and Technology, Korea*

P-0193 Heat Transfer Control by Dispersed Metallic Particles in CaO-Al₂O₃-CaF₂-based Glassy Mold Flux Film for Continuous Steel Casting

Sung-Hee HYUN, Jung-Wook CHO

Pohang University of Science and Technology, Korea

P-0699 Uncertainty of Physical Property Measurement of Slag / Flux with Volatiles

<u>Junxue ZHAO</u>, Ze WANG, Zhongyu ZHAO, Liang NIU, Boqiao QU, Zexin TAN, Yaru CUI Xi'an University of Architecture and Technology, China

P-0545 Development of Experimental Techniques for Qualification of Mould Fluxes for Continuous Casting of Liquid Steel

<u>Ashok KAMARAJ</u>¹, Snehashish TRIPATHY¹, Ganesh CHALAVADI¹, Preeti SAHOO², Siddhartha MISRA² ¹National Metallurgical Laboratory, India, ²Tata Steel, India

P-0353 Correlation of the High Temperature Viscous Behavior and Structure in Molten CaO-SiO₂-CaF₂ Slags Containing Na₂O and K₂O

Il SOHN, <u>Minseok SEO</u> Yonsei University, Korea

P-0265 Challenges in the Mold Fluxes Design

KEYNOTE Jian YANG^{1,2}, Lin WANG¹, Qi WANG¹, Jianqiang ZHANG¹, Yasushi SASAKI^{1,3}, Chen ZHANG⁴, Dexiang CAl⁴, Oleg OSTROVSKI¹

¹The University of New South Wales, Australia, ²Yonsei University, Korea, ³Tohoku University, Japan, ⁴Baosteel Co., Ltd., China

P-1057 Modeling of non-Newtonian Mold Powders for Continuous Casting of Steel

Hyunjin YANG¹, Pavel Ernesto RAMIREZ LOPEZ¹, Diana Mier VASALLO², Maite CORNILLE³, Bridget STEWART⁴

Swerim AB, Sweden, ²SIDENOR I+D, Spain, ³ArcelorMittal, France, ⁴Materials Processing Institute, United Kinadom

P-1082 Modelling the Performance of Casting Powders during Continuous Casting of Steel

<u>Pavel Ernesto RAMIREZ LOPEZ</u>, Pooria JALALI, Hyunjin YANG, Sailesh KESAVAN Swerim AB. Sweden

Refractories I

refractory-slag reaction

P-1096 Refractory Wear by Molten Copper Slag with Presence of Clays Minerals

<u>Julio OSSANDON</u>, Leandro VOISIN, Camila PIZARRO *University of Chile, Chile*

P-1046 Dissolution Phenomena of Refractory Raw Materials in Liquid Slags

KEYNOTE Yelim KIM, Jaewoo MYUNG, <u>Yongsug CHUNG</u> *Korea Polytechnic University, Korea*

$\textbf{P-0256} \quad \text{Dynamic Wetting of CaO-SiO}_2\text{-MgO-FeO}_x\text{-Al}_2\text{O}_3\text{-MnO-TiO}_2 \text{ based Slags on MgO Substrates }$

<u>Ai Thi Diem NGUYEN</u>¹, Brian MONAGHAN¹, Raymond James LONGBOTTOM¹, Geoffrey EVANS², Michael Wallace CHAPMAN³

¹University of Wollongong, Australia, ²University of Newcastle, Australia, ³BlueScope Limited, Australia

P-0772 A Fundamental Study on the Thermal Degradation of MgO-C in Steelmaking Process

<u>Gi Ho LA</u>¹, Cheol Min YOON¹, Oh Seong KWON², Yoon Ki BYEUN², Dong Joon MIN¹ ¹Yonsei University, Korea, ²POSCO, Korea

P-0848 Freeze Lining Behaviour in DC Smelting Furnaces: the Influence of Furnace Design and Operation

<u>Johannes Hendrik ZIETSMAN</u>^{1,2}, Alfred Edward Jules BOGAERS², Tumelo MAKGOALE^{1,2}, Quinn Gareth REYNOLDS³

¹University of Pretoria, South Africa, ²Ex Mente Technologies, South Africa, ³Mintek, South Africa

P-0221 Determination of Bath/Freeze Lining Interface Temperature Based on the Rheology of the Slag

<u>Samant NAGRAJ</u>^{1,2}, Liugang CHEN², Zhuangzhuang LIU², Mathias CHINTINNE¹, Muxing GUO², Bart BI ANPAIN²

¹Metallo Belaium N.V., Belaium, ²Katholieke Universiteit Leuven, Belaium

P-0294 Effect of Crystallographic Property of MgO on Spinel Growth at Interface between CaO-SiO₂-Al₂O₃ Slaσ

<u>Cheol Min YOON</u>, Dong Joon MIN Yonsei University, Korea

Characterization of slags I

in-situ observation

P-0816 In situ Study of the Smelting Phenomena for Pre-Reduced Ilmenite Pellet

Hossein SALEHI¹, Jafar SAFARIAN¹, Leiv KOLBEINSEN¹, Stian SEIM²

¹Norweaian University of Science and Technology, Norway, ²TiZir Titanium and Iron, Norway

P-0669 In-situ Observation of Slag-Metal Separation Process of Niobium Concentrate

Zhuang MA, Zengwu ZHAO

Inner Mongolia University of Science and Technology, China

P-0541 Sampling Procedure, Characterisation and Quantitative Analyses of Aluminium White Dross

<u>Cathrine Kyung Won SOLEM</u>¹, Lisa ROSSATO^{1,2}, Egil SOLBERG³, Shahid AKHTAR⁴, Gabriella TRANELL¹, Ragnhild E. AUNE¹

¹Norwegian University of Science and Technology, Norway, ²Unversity of Padova, Italy, ³Alcoa Norway ANS, Norway, ⁴Norsk Hydro ASA, Norway

P-0274 In-situ Phase Determination of Primary Precipitated Compound from Molten Phosphorus-Containing Slag

<u>Masanori SUZUKI</u>, Honami SERIZAWA, Sho NAKANO, Norimasa UMESAKI *Osaka University, Japan*

P-0185 Advanced Slag Analysis Methods – on-Line Optical Emission Spectrometry, Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy

Matti AULA, Henri PAUNA, Avishek Kumar GUPTA, Francis GYAKWAA, Timo FABRITIUS University of Oulu, Finland

P-1422 The Fast Analysis of Heterogeneous Materials Such as Slags without Sample Preparation – the Key to In-situ Instead of Post-Mortem Process Control

<u>Alexander SCHLEMMINGER</u>¹, Amit AHSAN¹, Kee Young LEE²
¹SECOPTA analytics GmbH, Germany, ²EuroScience Co., Ltd., Korea

Kinetics I

multiphase reaction kinetics

P-1103	$Kinetics\ of\ MnO\ Reduction\ from\ Slag;\ Comparison\ of\ Carbon\ and\ Silicon\ as\ Reductants$
KEYNOTE	Kenneth COLEY ¹ , Brian JAMIESON ² , Mansoor BARATI ³

¹Western University, Canada, ²McMaster University, Canada, ³University of Toronto, Canada

P-0707 Flux-Mediated Wetting of Alumina by Liquid Fe-Ti-Csat

Thomas BRITT, P. Chris PISTORIUS Carnegie Mellon University, USA

P-0269 An Experimental Investigation of Vapour Explosions by Droplet Impingement of Aluminum in

Arne SIMONS¹, Inge BELLEMANS¹, Tijl CRIVITS², Thomas SUETENS², Kim VERBEKEN¹ ¹Ghent University, Belgium, ²Umicore, Belgium

P-0468 Experimental Investigation of the Oxidation Kinetics of Molten Lead Silicate Slags Olivier VERGOTE, Vincent CNOCKAERT, Inge BELLEMANS, Verbeken KIM

Ghent University, Belgium

P-0386 The Effect of Ca Alloy Content on the Mass Transfer of B between Si and SiO₂-CaO Slag Erlend Lunnan BJØRNSTAD, Gjermund Lie SOLBAKK, Øyvind MOSEVOLL, Gabriella Maria TRANELL Norwegian University of Science and Technology, Norway

Investigating the Kinetics of Molten Salt Synthesis of La-based Perovskite Type Oxides P-1080 Yonatan YEVILEVICH¹, Leonid VRADMAN^{1,2}, Jonatan ZANA², Ira WEINSTOCK¹, Moti HERSKOWITZ¹ ¹Ben-Gurion University of the Negev, Israel, ²Nuclear Research Centre Negev, Israel

Electrochemical processing and molten salts I

molten salts for REM recovery

P-0930 Recovery of Indium From In-Sn Alloy in Molten Fluoride Electrolyte

<u>Kyoung Tae PARK</u>¹, Sang Hoon CHOI^{1,2}, Jong Soo BYEON^{1,2}

¹Korea Institute of Industrial Technology, Korea, ²Inha University, Korea

P-1326 Recycling of Critical Metals by Using Molten Salt

KEYNOTE Toru H. OKABE¹, Takanari OUCHI²

1The University of Tokyo, Japan, ²Institute of Industrial Science, Japan

P-0220 Recovery and Extraction of Rare-Earth Element from Rare-Earth Permanent Magnet Waste by Molten Fluoride Electrolysis

Yusheng YANG, Chaoqun LAN, Zengwu ZHAO Inner Mongolia University of Science and Technology, China

P-1150 Selective Recovery of Rare Earth Elements from Spent Nd-Fe-B Magnet Using Zinc Chloride

Jieun AHN¹, Chan Uk CHOl¹, Gyeonghye MOON², Tae-Hyuk LEE¹, <u>Jungshin KANG</u>¹

*Korea Institute of Geoscience and Mineral Resources. Korea. ²HANNAE For T Co., Ltd., Korea

P-0700 Alternative Way of Producing Rare Metals by a Molten Salt Based Process of Oxide Feedstocks

KEYNOTE <u>Jonghyeon LEE^{1,2}</u>, Sukcheol KWON¹, Hayk NERSISYAN¹, Wan-Bae KIM¹, Gyu-Seok LIM¹, Hansik RYU¹, Woo Seok CHOl¹

¹Chungnam National University, Korea, ²ZIRON TECH, Co., Ltd., Korea

Electrochemical processing and molten salts II

molten salts for metal production

P-1134 Melts Electrochemistry: Theoretical and Experimental Insights

KEYNOTE Antoine ALLANORE

Massachusetts Institute of Technology, USA

P-1125 Development of a Novel Electrolytic Process for Producing High-Purity Magnesium Metal Using Magnesium Oxide

<u>Tae-Hyuk LEE</u>¹, Jin-Young LEE¹, Young Min KIM², Jungshin KANG¹

¹Korea Institute of Geoscience and Mineral Resources, Korea, ²Korea Institute of Materials Science, Korea

P-0982 Electrodeposition of Silicon from Molten Salt Electrolytes

KEYNOTE Geir Martin HAARBERG

Norwegian University of Science and Technology, Norway

P-0374 Metal Production via Sulfide from Oxide

KEYNOTE Ryosuke O. SUZUKI¹, Takumi KANEKO¹, Eltefat AHMADI^{1,2}, Yuta YASHIMA¹, Shungo NATSUI^{1,3}, Tatsuya KIKUCHI¹

*Hokkaido University, Japan, *Japan Society for the Promotion of Science, Japan, *Tohoku University, Japan

P-0755 Electrochemical Mechanism of Desulfurization in CaO-SiO₂-Al₂O₃ System

Dong Joon MIN, <u>Sang Hoon LEE</u> Yonsei University, Korea

P-0397 Correlation between Applied Electricity and Electrochemical Desulfurization of Molten Iron by Molten Slag

<u>Dong-Hyun KIM</u>, Youn-Bae KANG *Pohang University of Science and Technology, Korea*

Energy and environments I

energy recovery and environmental protection

P-0945 Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon Metal with

KEYNOTE Changing Energy Systems

Gudrun SAEVARSDOTTIR¹, Thordur MAGNUSSON², Halvor KVANDE³

¹Reykjavik University, Iceland, ²Stakksberg, Iceland, ³Norwegian University of Science and Technology, Norway

P-0967 Modification of Cr-bearing Molten Slag for Carbon Capture and Storage

Qing ZHAO, Jingyu LI, Kaiwen YOU, Chengjun LIU Northeastern University. China

P-0288 Control of Hydration of Free Magnesia in Steelmaking Slag

KEYNOTE Ryo INOUE¹, Madoka UCHIDATE², Yasushi TAKASAKI¹

¹Akita University, Japan, ²JFE Mineral Co., Ltd., Japan

P-0464 Use of Oxygen Steelmaking Slag for Remediation of Metalloid-contaminated Water

Somnath BASU, Abhilash KARRI, Sumit SUMAN Indian Institute of Technology Bombay, India

P-1110 Influence of Chelating Agent on the Elution Characteristic of Steelmaking Slag into Aqueous Environment

Taiki KAWASAKI, <u>Hiroyuki MATSUURA</u> The University of Tokyo, Japan

P-0623 Process Concept for the Dry Recovery of Thermal Energy of Liquid Ferrous Slags

KEYNOTE Felix FIRSBACH^{1,2}, Dieter SFNK¹

¹RWTH Aachen University, Germany, ²Lhoist Group, Belgium

P-1328 Air Granulation and Energy Recovery of Blast Furnace Slag

<u>Santiago FAUCHER</u>¹, Sangyoon OH¹, Seong-II SHIM¹, Seung-Joon IM¹, D. Satish KUMAR², Praveen KUMAR², Mikael LINDVALL³, Diana ORRLING³, Lars-Olov NORDBERG⁴

¹Ecomaister Co., Ltd., Korea, ²Jindal Steel Works Ltd., India, ³SSAB AB, Sweden, ⁴Swerea MEFOS, Sweden

P-0465 Formation and Reduction of NO from Nitrogen in the Combustion of the Fuels Used in the Sintering

KEYNOTE Process of Iron Ore

Leonardo ROCHA¹, Hyojung KIM², Jisung PARK², Sung-Mo JUNG¹

¹Pohang University of Science and Technology, Korea, ²POSCO, Korea

Ash and weld fluxes I

coal ash

P-1120 Phase Equilibria and Viscosity of K₂O-CaO-SiO₂ Slags for Biomass Combustion and Gasification Daniel LINDBERG¹, Imam SANTOSO^{1,2}

¹Aalto University, Finland, ²Institute Teknologi Bandung, Indonesia

P-0811 Gaining Insight into the Behavior of Slags in Coal Combustion: Applying the Connected Local Equilibria Method Using ChemApp and SimuSage

Stephan PETERSEN¹, Moritz TO BABEN¹, Klaus HACK¹, Piotr PLAZA², Bernhard SCHOPFER², Jörg MAIER², Matthias DOHRN³, Benedetto RISIO⁴, Alexander BERRETH⁴

¹GTT-Technologies, Germany, ²University of Stuttgart, Germany, ³RWE Power AG, Germany, ⁴RECOM Services GmBH, Germany

P-0445 Real Time Evolutions of Individual Industrial Coal Particles in Varied Oxygen Partial Pressure Environments

<u>Anna NAKANO</u>, Jinichiro NAKANO, James BENNETT *National Energy Technology Laboratory, USA*

P-0276 Properties of Eutectic Slags: Filling the Gaps for an Agglomeration Model

Marc DUCHESNE, <u>Nicole BOND</u>, Jaber SHABANIAN, Robin HUGHES Natural Resources Canada, Canada

Recycling and sustainability I

sustainable utilization of slag and refractory

P-0603 A Review of Circular Economy Prospects for Stainless Steelmaking Slags

KEYNOTE <u>Lauri HOLAPPA</u>¹, Marko KEKKONEN¹, Ari JOKILAAKSO¹, Juha KOSKINEN²

¹Aalto University, Finland, ²Tapojärvi Oy, Finland

P-0174 A Computational Study on the Mixing and Reduction of Slags From Ferrochrome and Stainless

Steel Production

<u>Eetu-Pekka HEIKKINEN</u>¹, Kimmo VALLO², Topi IKÄHEIMONEN², Timo FABRITIUS¹

1 University of Oulu, Finland, 2 Outokumpu Stainless, Finland

P-0264 Processing and Utilization of Steelmaking Slags in the European Union

KEYNOTE Johannes SCHENK^{1,2}, Monika DRAXLER²

¹Montanuniversität Leoben, Austria, ²K1-MET GmbH, Austria

P-0376 Utilization of Waste Materials from the Pulp & Paper Inderstry as Raw Materials in the Steelmaking Industry

<u>Tova JARNERUD</u>¹, Xianfeng HU², Chuan WANG², Pär G. JÖNSSON¹, Andrey KARASEV¹

**IKTH Royal Institute of Technology, Sweden, **SWERIM AB, Sweden

P-1433 Some Recycling Aspects of Molten Slags, Fluxes and Salts

KEYNOTE Seshadri SEETHARAMAN

KTH Royal Institute of Technology, Sweden

Recycling and sustainability II

slag valorization and processing for higher values

P-1050 Phase Separation in Phosphorus-Containing System without CaO Saturation at Elevated Temperature

Yu-Ichi UCHIDA, Hideki TSURUOKA, Chiho WATANABE, Takao OKURANO Nippon Institute of Technology, Japan

P-0284 Phosphorus Segregation in Basic Oxygen Steelmaking Slags

Kyoung-Oh JANG¹, Oluwatosin A. ALADEJEBI¹, Paul ZULLI¹, Geoffrey EVANS², Tom HONEYANDS², Thi Bang Tuyen NGUYEN², Damien O DEA³, <u>Brian MONAGHAN¹</u>

¹University of Wollongong, Australia, ²The University of Newcastle, Australia, ³BHP, Australia

P-0328 Preliminary Numerical Study into Gravity Separation of Dicalcium Silicate from BOS Slag during Solidification

<u>Thi Bang Tuyen NGUYEN</u>¹, Tom HONEYANDS¹, Subhasish MITRA¹, Geoffrey EVANS¹, Brian MONAGHAN², Paul ZULLI², Kyoung-Oh JANG², Damien O DEA³

¹The University of Newcastle, Australia, ²University of Wollongong, Australia, ³BHP, Australia

$\hbox{ P-0141} \quad Influence of Al_2O_3 Addition on the Solidified Microstructure and Crystallization Kinetics of BOF Slag \\$

Chunwei LIU^{1,2}, Shuigen HUANG¹, Bart BLANPAIN¹, Muxing GUO¹

¹Katholieke Universiteit Leuven, Belgium, ²Institute of Process Engineering, Chinese Academy of Sciences, China

P-0449 Perspectives of Slag "Co-product" Zero Waste Full Utilization

KEYNOTE Jian YANG, <u>II SOHN</u> *Yonsei University, Korea*

P-0974 Predicting Slag Properties for Reduced Risk in Mineral Wool Production

<u>Hanlie KOTZE</u>^{1,2}, Bruce NOURSE², Saskia ESSACK², Jinyeol KIM³
¹Consensi Consulting, South Africa, ²Tenova Pyromet, South Africa, ³KCC World, Korea

P-0431 Slag Engineering and Valorization in the Framework of Sustainable Metallurgy

KEYNOTE Bart BLANPAIN

Katholieke Universiteit Leuven, Belgium

Recycling and sustainability III

novel processing of co-products

P-0346 Cold Fluid Modeling of Air-Blast Slag Atomization

KEYNOTE Mansoor BARATI

The University of Toronto, Canada

P-0841 Controlled Evolution of Rare Earth Phosphate in Coal Ash Slag

<u>Jinichiro NAKANO</u>, Anna NAKANO, James BENNETT National Energy Technology Laboratory, USA

P-0944 Modeling of Powder Production during Centrifugal Atomization

Vishnu Teja MANTRIPRAGADA¹ Krishanu KUMAR¹ Pankaj KUMAR² <u>Sabita SARKAR</u>¹ Indian Institute of Technology Madras, India, ²SRM Institute of Science and Technology, India

P-0144 The Behaviour of Zinc during the Recycling of BOS Filter Cake

<u>Raymond James LONGBOTTOM</u>¹, Brian MONAGHAN¹, David (John) PINSON², Sheng (Jason) CHEW²
¹University of Wollongong, Australia, ²BlueScope Limited, Australia

P-0861 Foamed Glass Materials Using Quartz from Copper Mine Tailings

<u>Lina M. URIBE</u>, Francisco RIVAS, Juan D. GIRALDO *University of Talca, Chile*

P-1432 Use of Copper Slag for Iron Alloys Fabrication. A Circular Economy Approach for the Chilean

KEYNOTE Metallurgical Industry

Mario SANCHEZ

University of Andres Bello, Chile

Thermodynamics I

phase diagrams and refining thermodynamics

P-0824 Challenges in the Phase Diagram Study of Alkali Oxide Systems

KEYNOTE Pierre Hudon¹, In-Ho JUNG²

¹McGill University, Canada, ²Seoul National University, Korea

P-0150 Recent Developments in Experimental and Thermodynamic Modelling Techniques for the Characterisation of Phase Equilibria in Complex High Temperature Oxide Systems

<u>Maksym SHEVCHENKO</u>, Denis SHISHIN, Peter HAYES, Evgueni JAK

The University of Queensland, Australia

P-0903 Determination of Solubility and Activity Coefficient of Chromium Oxide in the CaO-SiO₂-CrO_x System

Yoshinao KOBAYASHI, <u>Zhi LI</u>, Chisei KATO Tokyo Institute of Technology, Japan

P-0702 Intergrated Experimental Phase Equilibria and Crystallisation Kinetic Study of the FeO-Fe₂O₃-CaO-SiO₂-Al₂O₃ System for the Iron-sintering Industry

<u>Siyu CHENG</u>, Maksym SHEVCHENKO, Eugene JAK, Peter HAYES The University of Queensland, Australia

P-1169 Thermodynamics on Slag Refining of Molten Si and Si-based Alloys

KEYNOTE Kazuki MORITA

The University of Tokyo, Japan

P-0488 Effect of La₂O₃ Addition to CaO-SiO₂ Slag on B and P Removal from Sn-doped Si for Solar-Grade Silicon Production

Mengyi ZHU¹, Guixuan WU², Jafar SAFARIAN¹

¹Norwegian University of Science and Technology, Norway, ²Forschungszentrum Jülich GmbH, Germany

P-0827 A Literature Review on and Interpretation of the Properties of TiO₂ Slags

Hanlie KOTZE

University of Pretoria, South Africa

P-1282 Custom-Designed Fluxes for Steelmaking and the Measurement of Slag Capacities

<u>Yindong YANG</u>¹, Yonggang WEI², Mansoor BARATI¹, Alex MCLEAN¹

**University of Toronto, Canada, **Kunming University of Science and Technology, China

P-0298 Solubility, Oxidation State and Activity of Vanadium Oxide

Elin ASTROM¹, Johan BJORKVALL², Bo BJÖRKMAN³

¹Luossavaara-Kiirunavaara Aktiebolag, Sweden, ²Swerim AB, Sweden, ³Luleå University of Technology, Sweden

Modeling I

measurement and modeling of physicochemical properties

P-0409 Towards More Realistic Simulations of Microstructural Evolution in Oxidic Systems

Inge BELLEMANS¹, Nico VERVLIET², Lieven De LATHAUWER², Nele MOELANS², Kim VERBEKEN¹

Ghent University, Belaium, ²Katholieke Universiteit Leuven, Belaium

P-0565 Rheological Properties of Ternary SiO₂-CaO-Al₂O₃ Silicate System

<u>Kai TANG</u>¹, Casper Van Der EIJK¹, Sylvain GOUTTEBROZE¹, Qiang DU¹, Jafar SAFARIAN²
¹SINTEF Industry, Norway, ²Norwegian University of Science and Technology, Norway

P-1074 Structure Based Viscosity Model for Alumino-silicate Molten Slags

Ramana REDDY¹, Zhiming YAN¹, Xuewei LV²

¹The University of Alabama, USA, ²Chongqing University, China

P-0740 A Diffusion Model for Liquid Oxide Solutions

<u>Sun Yong KWON</u>¹, Manas PALIWAL², In-Ho JUNG³

¹McGill University, Canada, ²Indian Institute of Technology Gandhinagar, India, ³Seoul National University, Korea

P-0862 Thermodynamic Modelling of Molten Slag, Matte, Metal and Speiss Phases for the Pyrometallurgy of Lead (Pb) Processing Systems

<u>Denis SHISHIN</u>, Maksym SHEVCHENKO, Viktoria PROSTAKOVA, Peter HAYES, Evgueni JAK The University of Queensland, Australia

P-0996 Experimental Gaps in Viscosity Modelling of Oxide Systems

Alex KONDRATIEV

National University of Science and Technology MISIS, Russia

P-1307 New Progress in Ternary and Multicomponent Calculation from Binaries

KEYNOTE <u>Kuo-Chih CHOU</u>¹, Cui WANG¹, Zhi-Gang YU²

¹University of Science and Technology Beijing, China, ²Shanghai University, China

Modeling II

thermodynamic database development

P-0725 Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags:

KEYNOTE Model Development, Interpretation, and Application

Youn-Bae KANG

Pohang University of Science and Technology, Korea

P-1073 Sulfide Capacities of Steel Making Slags

KEYNOTE Ramana REDDY, A YAHYA

The University of Alabama, USA

P-1184 Thermodynamic Database for the Iron Ore Sintering Process

Takahiko KOHTAKE¹, Dong-Geun KIM², In-Ho JUNG²

¹Nippon Steel Corporation, Japan, ²Seoul National University, Korea

P-0874 Coupled Phase Diagram Experiments and Thermodynamic Modeling of the Na₂O-B₂O₃-Fe₂O₃ System

Min-Kyung KIM, Ho-Gil CHOI, Seong-Woo CHOI, In-Ho JUNG, Kyung-Woo LEE, Ki-Tae NAM Seoul National University, Korea

P-0511 Thermodynamic Modelling of V Containing Steelmaking Slags

Chunlin CHEN1, Jean LEHMANN2, Yang HE1

¹Commonwealth Scientific and Industrial Research Organisation, Australia, ²ArcelorMittal, France

P-0856 Acceleration of Complex Equilibrium Calculations for Integration in High Temperature Models

Willem Abraham ROOS1, Johannes Hendrik ZIETSMAN1,2

¹University of Pretoria, South Africa, ²Ex Mente Technologies, South Africa

P-0125 Development of a Slag Model to Better Understand and Control Steelmaking Processes

KEYNOTE Jean LEHMANN¹, Pascal GARDIN¹, Benjamin BOISSIERE¹, Aymeric PLAY¹, Chunlin CHEN²,

Edgar CASTRO CENEDO³, Jean-Pierre BELLOT⁴, Alain JARDY⁴

¹ArcelorMittal, France, ²Commonwealth Scientific and Industrial Research Organisation, Australia,

³Affival SAS, France, ⁴Institut Jean Lamour, France

P-1278 Improving Steel Plant Operation Using FactSage

Sourav Kumar PANDA, Aida ABBASALIZADEH, Erwin HARBERS, Marleen WUESTENENK, Sander WILLEMSEN,

Aart OVERBOSCH

Tata Steel Europe, Netherlands

Poster Presentation

P-0335 Study on the Leachability of Metals from Industrial-Scale Modified Copper Slag

<u>Jakob KERO</u>¹, Tommy VIKSTRÖM^{1,2}, Fredrik ENGSTRÖM¹, Caisa SAMUELSSON¹

**Ituleâ University of Technology, Sweden. **Poliden Mineral AB, Sweden

P-0361 Study on the Influence of Various Fluxing in Goethite Composite Pellets

<u>Tae Hyeon KIM</u>, II SOHN Yonsei University. Korea

P-0388 Investigation of Surface Oxide Layer of Metallurgical Grade Silicon (MG-Si)

<u>Erlend Lunnan BJØRNSTAD</u>, Gabriella Maria TRANELL Norwegian University of Science and Technology, Norway

P-0414 Effect of Al₂O₃/TiO₂/Na₂O on Lime Dissolution in Steelmaking Slag

Kan YU, Yanling ZHANG
University of Science and Technology Beijing, China

P-0423 Enrichment of Ti(C,N) by Adding Fe during Carbothermal Reduction of Ti-bearing BF Slag

<u>Tingfang JIAN</u>, Tongxiang MA, Mengjun HU, Liwen HU, Liangying WEN, Meilong HU *Chonaging University, China*

P-0454 Effect of Basic Oxygen Furnace (BOF) Slag on NO_x Reduction in Iron Ore Sintering Process

<u>Leonardo ROCHA</u>, Sung-Mo JUNG *Pohang University of Science and Technology, Korea*

P-0458 Computational Fluid Dynamics Study on the Zn Fuming Process in a Submerged Plasma Fumer

Zhongfu CHENG, Yannan WANG, Bart BLANPAIN, Muxing GUO Katholieke Universiteit Leuven. Belaium

P-0470 Long-term Dipping Corrosion Studies of Haynes 230 Alloy in High-Temperature MgCl₂-KCl Heat Transfer Fluid

Yuxiang PENG, Ramana REDDY The University of Alabama, USA

P-0473 Corrosion of Incoloy 800H Alloy in MgCl₂-KCl Salt with and without Zr Inhibitor at 800°C

Yuxiang PENG, Ramana REDDY The University of Alabama, USA

P-0476 Effect of Oxygen Blowing Condition on Emulsification Behavior during Copper Converting Process

<u>Jooho PARK</u>, Joohyun PARK *Hanyang University, Korea*

P-0480 Desulfurization Kinetics of Incoloy 825 Ni-based Superalloy Using CaO-Al₂O₃-MgO-TiO₂ Slags

Jinhyung CHO¹, Martinsson JOHAN², Sichen DU³, Joo Hyun PARK¹

¹Hanyang University, Korea, ²Swerim AB, Sweden, ³KTH Royal Institute of Technology, Sweden

P-0557 Study on the Improvement of Tundish Middle Plate Refractory for Steelmaking Cost Reduction

Hyungsic UM^{1,2}, Jungmin YOO^{1,3}, Yongsug CHUNG²

¹Donakuk Steel, Korea, ²Korea Polytechnic University, Korea, ³Inha University, Korea

P-0680 Granulation Characteristics of Molten Blast Furnace Slag in Gas Quenching Dry Granulation Technique

Lili WANG

North China University of Science and Technology, China

P-0688 Microstructure and Physicochemical Properties of Glass Ceramics Prepared from Stainless Steel Slag and Pickling Sludge

Yanling ZHANG, Shuai ZHANG, Zhancheng GUO University of Science and Technology Beijing, China

P-0689 Thermodynamic Interactions between Tin and Alloying Elements in Molten Iron and Fe-Cr Alloy

Hideki ONO, Koga HORI

University of Toyama

P-0719 Recovery of Metals from Primary and Secondary Wastes Using Pyrometallurgy: Two Case Studies in Chile

Romina CAYUMIL¹, Fernando PARADA², <u>Mario SANCHEZ</u>¹, Sergio Roberto RIVERA¹

¹University of Andres Bello, Chile, ²University of Concepcion, Chile

P-0747 Experimental Study of the Liquidus of the PbO-"FeO_x"-CuO_{0.5}-SiO₂ Containing Slag/Metal System and Sub-Systems

Xi Rui WEN, Maksym SHEVCHENKO, Evgueni JAK The University of Queensland, Australia

P-0756 Fundamental Study on the LIB Pyrometallurgical Recycling

Oh-Sung KWON, II SOHN Yonsei University, Korea

P-0761 Effect of Alkali Oxide and CaO/Al₂O₃ Mass Ratio on the Crystallization Behavior of Calcium-Aluminate-Based Mold Fluxes for High-Al Steels

<u>Gibeom KIM</u>, II SOHN Yonsei University, Korea

P-0783 Manufacturing of Dendritic Titanium by Electrorefining from CuTi Alloy in Chloride Molten Salt

Vladislav RI¹, Youngjun LEE², Hayk NERSISYAN¹, Jonghyeon LEE¹

¹Chungnam National University, Korea, ²ZIRON TECH, Korea

P-0799 Thermodynamic Properties of Liquid Binary and Ternary Alloys of Lanthanides with Al, In, Sn, Sb and Transition Metals

Valentina SUDAVTSOVA¹, <u>Maksym SHEVCHENKO</u>², Volodymyr KUDIN³, Anton DUDNIK¹,

Natalya PODOPRIGORA¹, Michael IVANOV¹

¹Institute for Problems of Materials Science, Ukraine, ²The University of Queensland, Australia, ³Taras Shevchenko National University of Kyiv, Ukraine

P-0836 Phase Equilibrium Behaviour of the Fe-V-O System under Reducing Conditions

Blessing MARAMBA¹, Xolisa Camagu GOSO², Johannes Hendrik ZIETSMAN¹

¹University of Pretoria, South Africa, ²Mintek, South Africa

P-0878 A Study on the Possibility of Hybrid Inorganic Fiber Using Slag

Eun Jin JUNG¹, Sun-Joong KIM

¹Research Institute of Industrial Science and Technology, Korea, ²Chosun University, Korea

P-0879 Reduction Characteristics and Slag Formation in Composite Pellets Using Steel Industry Co-Products

Sanghyuk LEE, <u>II SOHN</u>

Yonsei University, Korea

P-0882 Introduction of Lithium-Containing End-of-Life Products and Recycling Processes of Lithium Materials

Dong Ju SHIN1, Sung-Ho JOO1, Dong Seok LEE2, Shun Myung SHIN1,2

¹Korea Institute of Geoscience and Mineral Resources. Korea. ²University of Science and Technology, Korea

P-0891 Ferro-Molybdenum Green Production via Electrochemical Reduction in K₂MoO₄-MoO₃ Melts at Moderately High Temperatures

Kwang Won PARK, II SOHN

Yonsei University, Korea

P-0938 Effect of Sinter Basicity on Formation Fraction of CaO Based Liquidus Phases in Sintered Ores

Geun Yong RYU¹, Sun-Joong KIM¹, Ki Woo LEE², Ho Jun YOON²

¹Chosun University, Korea, ²Hyundai Steel, Korea

P-1059 Re-Assessment of Pseudo-Binary System Ca₂SiO₄-Ca₃P₂O₈ with High Phosphorus Content Formed at Elevated Temperature

Chiho WATANABE, Yu-Ichi UCHIDA

Nippon Institute of Technology, Japan

P-1173 What If the Materials Data You Need Doesn't Exist

<u>A. Nicholas GRUNDY</u>, Lina KJELLQVIST, Rui ZHANG, Qing CHEN, Ralf RETTIG, Johan JEPPSSON,

Johan BRATBERG

Thermo-Calc Software AB, Sweden

P-1178 Effect of TiO₂ Content on the Corrosion Behavior of MgO-Based Refractories

Junmo JEON1, Min-Kyu PAEK1, Hyunsik PARK2, Daniel LINDBERG1

¹Aalto University, Finland, ²Korea Institute of Geoscience and Mineral Resources, Korea

P-1198 Enhancement of Melt Formation in the FINEX Melter-Gasifier with Industrial By-Products

Minki KIM¹, Moo Eob CHOI², Taehyeok KIM², Joonho LEE¹

¹Korea University, Korea, ²POSCO, Korea

P-1207 Corrosion Behavior of MgO-C Refractory in the Electric Arc Furnace Slag Added with Na₂O

Beomshin PARK, Juhun LEE, Yongsug CHUNG

Korea Polytechnic University, Korea

P-1211 Estimation of Hydrogen Content in Stainless Steel Using Hydroxyl Capacity of Molten Slag

Junik JANG, Jeonghun KIM, Youngjo KANG

Dong-A University, Korea

P-1253 Observation of the Dissolution Behavior of Alumina Particle in CaO-Al₂O₃-SiO₂ Slags

Sangrok YEO, Seungwon JEON, Yongsug CHUNG

Korea Polytechnic University, Korea

P-1255 Experimental Study on the Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags

Shuo ZHAO¹, Zushu LI², Stephen SPOONER², Renze XU³

¹Hebei University of Engineering, China, ²University of Warwick, United Kingdom, ³University of Science and Technology Beijing, China

P-1258 Cu, Pb, Zn and As Distribution in the Slag Treatment Process

 $\underline{\text{Valery KAPLAN}^1}, \text{Nurlan DOSMUKHAMEDOV}^2, \text{Erzhan ZHOLDASBAY}^2, \text{Aidar ARGYN}^2$

¹Weizmann Institute of Science, Israel, ²Satbayev University, Kazakhstan

P-1287 Refinement of Zinc Chloride with Vacuum Distillation of Molten Salt

<u>Gen KAMIMURA</u>, Hiroyuki MATSUURA

The University of Tokyo, Japan

P-1290 Effect of Crystallization and Vitrification on F Stabilization of CaO-SiO₂-Al₂O₃-MgO-CaF₂ Slag System

Honamin HA, Juna-Wook CHO

Pohana University of Science and Technology, Korea

P-1320 Assessment of Non-Metallic Inclusions in Different Ferroalloys and Their Influence on the Steel Cleanliness

Yong WANG, Andrey KARASEV, Pär G. JÖNSSON

KTH Royal Institute of Technology, Sweden

P-1322 Laser-Induced Breakdown Spectroscopy in the Characterization of Ilmenite Slags

<u>Avishek Kumar GUPTA</u>¹, Matti AULA¹, Timo FABRITIUS¹, Pasi MÄKELÄ²

¹University of Oulu, Finland, ²Outotec, Finland

P-1332 Numerical Study on the Open Eye Formation in a 150t Ladle

Yu LIU¹, Mikael ERSSON¹, Björn GLASER¹, Heping LIU², Pär G. JÖNSSON¹

¹KTH Royal Institute of Technology, Sweden, ²Central Iron and Steel Research Institute, China

P-1337 Characterization of Non-Metallic Inclusions in the Steel by Using PDA/OES and Off-line Investigation Methods

Hongying DU¹, Annika YANG², Andrey KARASEV¹, Pär G. JÖNSSON¹

¹KTH Royal Institute of Technology, Sweden, ²SSAB Special Steels, Sweden

P-1341 Mathematical Modelling of the Hump Height in an Uphill Teeming Ingot Casting Process Jun YIN, Mikael ERSSON, Pär G. JÖNSSON

KTH Royal Institute of Technology. Sweden

P-1362 Mathematical Modelling and Plant Trial on Slagging Regime in a Ladle Refining Furnace for High-Efficiency Desulphurization

Zicheng XIN¹, Jiangshan ZHANG¹, Yu JIN², Jin ZHENG², Jiafeng CUl², Qing LIU¹
University of Science and Technology Beijing, China, ²Hebei Iron and Steel Co., Ltd., China

P-1363 Residual Elemental Behavior in the Carbothermal Reduction Process of Copper Slag

Zhi Ll, <u>Guojun MA</u>, Xiang ZHANG, Yunyao YANG, Shengwei MA Wuhan University of Science and Technology, China

P-1373 An Integrated Environmental Framework for Evaluating Long-term Leaching Prediction of Slag by Percolation-Controlled Scenario and Transfer Scenario Models

<u>Inae KWON</u>, Dongjun SHIN, Jungwon LEE, Sanghyung LEE *Hyundai Steel, Korea*

P-1382 Study on Non-metallic Inclusions in Al Deoxidized Bearing Steel during EAF-LF-VD Steelmaking Process

Kai-Lun Ll¹, Min JIANG¹, Ying WANG², Kun-Peng WANG², Jian-Fei XU², Xinhua WANG¹¹University of Science and Technology Beijing, China,²Zenith Steel Group Co., Ltd., China

P-1411 Determination of Redox State of Steelmaking Slag Using Electrical Conductivity Measurement

Hamed MAZAHERI¹, Christian WEIß²

¹K1-MET GmbH, Austria, ²Montanuniversität Leoben, Austria

P-1461 Direct Smelting Method for Recovering Valuable Metals from the End-of-Life xEV Batteries Using Clean Slag Recycling

Ho Seok LEE, <u>Jingu KANG</u>, Eungbae KIM, Donghyun KANG, Namil MOON Young Poong Research Institute of Metallurgy, Korea

P-1476 Experimental Phase Equilibria Studies in the "CuO_{0.5}"-CaO-SiO₂ System in Equilibrium with Metallic Copper

Georgii KHARTCYZOV, Maksym SHEVCHENKO, Siyu CHENG, Peter Charles HAYES, Evgueni JAK The University of Queensland, Australia

DISCUSSION SESSION LIST

Explore the recent progress in slags, fluxes and salts research.

Regardless of the field of ferrous and non-ferrous communities, environment, or energy, we hope researchers can discuss opportunities for the present and future!

Online Discussion Session

- 1) A session chair will introduce a presenter.
- A presenter will summarize its presentation for 2-3 min.
 (We preferably recommend you to prepare 2-3 slides.)
- 3) Question(s) will be given to a presenter.
- 4) All presenters and audiences will have a discussion.

✓ How to Join a Discussion Session

- Way 1) A presenter will receive an email with a ZOOM link one day prior to the session.
- Way 2) A presenter can access each discussion session room via the virtual website of MOLTEN 2021.

✓ Other Important Notices

- 1) Please join the session 15 minutes before it starts.
- 2) Be careful not to make noise when you join a session.
- 3) Recommend using headset to deliver clearly. (Laptop audio significantly reduces the clarity of voice)
- 4) The ZOOM TEST ROOM opens from 10 a.m. to 3 p.m. on February 23-25 (KST).

Modeling I (measurement and modeling of physicochemical properties)

DATE February 23 (Tuesday)

TIME 16:00-17:00 (Korea Standard Time)

CHAIRS Youn-Bae KANG (Pohang University of Science and Technology)

Inge BELLEMANS (Ghent University)

P-0409	Towards More Realistic Simulations of Microstructural Evolution in Oxidic Systems	Inge BELLEMANS (Ghent University)
P-0565	Rheological Properties of Ternary SiO ₂ -CaO-Al ₂ O ₃ Silicate System	Kai TANG (SINTEF Industry)
P-1074	Structure Based Viscosity Model for Alumino-silicate Molten Slags	Ramana REDDY (The University of Alabama)
P-0740	A Diffusion Model for Liquid Oxide Solutions	Sun Yong KWON (McGill University)
P-0862	Thermodynamic Modelling of Molten Slag, Matte, Metal and Speiss Phases for the Pyrometallurgy of Lead (Pb) Processing Systems	Denis SHISHIN (The University of Queensland)
P-0996	Experimental Gaps in Viscosity Modelling of Oxide Systems	Alex KONDRATIEV (National Univ. of Sci. and Tech. MISIS)
P-1307 KEYNOTE	New Progress in Ternary and Multicomponent Calculation from Binaries	Kuo-Chih CHOU (USTB I Shanghai Univ.)

Modeling II (thermodynamic database development)

DATE February 23 (Tuesday)

TIME 17:00-18:30 (Korea Standard Time)

CHAIRS In-Ho JUNG (Seoul National University)

Takahiko KOHTAKE (Nippon Steel Corporation)

P-0725 KEYNOTE	Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags: Model Development, Interpretation, and Application	Youn-Bae KANG (POSTECH)
P-1073 KEYNOTE	Sulfide Capacities of Steel Making Slags	Ramana REDDY (The University of Alabama)
P-1184	Thermodynamic Database for the Iron Ore Sintering Process	Takahiko KOHTAKE (Nippon Steel Corporation)
P-0874	Coupled Phase Diagram Experiments and Thermodynamic Modeling of the $Na_2O-B_2O_3-Fe_2O_3$ System	Min-Kyung KIM (Seoul National University)
P-0511	Thermodynamic Modelling of V Containing Steelmaking Slags	Chunlin CHEN (CSIRO)
P-0856	Acceleration of Complex Equilibrium Calculations for Integration in High Temperature Models	Willem Abraham ROOS (University of Pretoria)
P-0125 KEYNOTE	Development of a Slag Model to Better Understand and Control Steelmaking Processes	Jean LEHMANN (ArcelorMittal)
P-1278	Improving Steel Plant Operation Using FactSage	Sourav Kumar PANDA (Tata Steel Europe)

Thermodynamics I (phase diagrams and refining thermodynamics)

DATE February 23 (Tuesday)

TIME 20:00-21:30 (Korea Standard Time)

CHAIRS In-Ho JUNG (Seoul National University)

Kazuki MORITA (The University of Tokyo)

P-0824 KEYNOTE	Challenges in the Phase Diagram Study of Alkali Oxide Systems	In-Ho JUNG (Seoul National University)
P-0150	Recent Developments in Experimental and Thermodynamic Modelling Techniques for the Characterisation of Phase Equilibria in Complex High Temperature Oxide Systems	Maksym SHEVCHENKO (The University of Queensland)
P-0903	Determination of Solubility and Activity Coefficient of Chromium Oxide in the CaO-SiO ₂ -CrO _x System	Zhi LI (Tokyo institute of Technology)
P-0702	Intergrated Experimental Phase Equilibria and Crystallisation Kinetic Study of the FeO-Fe $_2$ O $_3$ -CaO-SiO $_2$ -Al $_2$ O $_3$ System for the Iron-sintering Industry	Siyu CHENG (The University of Queensland)
P-1169 KEYNOTE	Thermodynamics on Slag Refining of Molten Si and Si-based Alloys	Kazuki MORITA (The University of Tokyo)
P-0488	Effect of La_2O_3 Addition to CaO -SiO $_2$ Slag on B and P Removal from Sn-doped Si for Solar-Grade Silicon Production	Mengyi ZHU (Norwegian Univ. of Sci. and Tech.)
P-0827	A Literature Review on and Interpretation of the Properties of TiO_2 Slags	Hanlie KOTZE (University of Pretoria)
P-1282	Custom-Designed Fluxes for Steelmaking and the Measurement of Slag Refining Capacities	Yindong YANG (University of Toronto)
P-0298	Solubility, Oxidation State and Activity of Vanadium Oxide	Elin ASTROM (LKAB)

Ferroalloys slags I (manganese ferroalloys slags)

DATE February 23 (Tuesday)

TIME 17:00-18:00 (Korea Standard Time)
CHAIRS Xuewei LV (Chongqing University)

Gudrun SAEVARSDOTTIR (Reykjavik University)

P-1036	Modelling Si-Furnace Operational Conditions	Gudrun SAEVARSDOTTIR (Reykjavik University)
P-0249	Foaming of Silicomanganese Slag during Carbothermic Reduction	Vincent CANAGUIER (Norwegian Univ. of Sci. and Tech.)
P-0907	Formation of Carbides, TiC and SiC in Production of SiMn Alloys	Eli RINGDALEN (SINTEF Industry)
P-0330 KEYNOTE	Slag Properties in the Primary Production Process of Mn- Ferroalloys	Merete TANGSTAD (Norwegian Univ. of Sci. and Tech.)
P-0308	Investigation of Liquid Slag-Metal Behaviour at Elevated Temperature: Interaction between Liquid FeMn Slag and Liquid FeMn Metal	Sarina BAO (SINTEF Industry)
P-0440	Molten Ferromanganese Slag Production from Mn-ores	Tichaona MUKONO (Norwegian Univ. of Sci. and Tech.)

Ferroalloys slags II (physicochemical properties of ferroalloys slags)

DATE February 23 (Tuesday)

TIME 18:00-19:00 (Korea Standard Time)

CHAIRS Merete TANGSTAD (Norwegian University of Science and Technology)

Sangho YI (POSCO)

P-0972 KEYNOTE	A Novel Process for the Smelting Reduction of Silicate Fluxed Chromite Ore Fines Using FINEX® Platform Technology	Sangho YI (POSCO)
P-1414	Thermodynamic Analysis of Sulfur in Slag and Alloy Melt Produced from Spent Catalyst in Petroleum Refinery	Jong-Jin PAK (Hanyang University)
P-0201	Influence of Sulphur on the Interfacial Behaviour between FeMn Alloy-Slag and SiMn Alloy-Slag	Sergey BUBLIK (Norwegian Univ. of Sci. and Tech.)
P-0127	Formation of Slag in Si and FeSi Furnaces	Marit Buhaug FOLSTAD (Norwegian Univ. of Sci. and Tech.)
P-0530	The Production of Pig Iron and Calcium Aluminate Slags for Alumina Recovery from Bauxite Ore	Adamantia LAZOU (Norwegian Univ. of Sci. and Tech.)

Non-ferrous slags I (phase equilibria of Cu smelting slag)

DATE February 23 (Tuesday)

TIME 20:00-21:00 (Korea Standard Time)
CHAIRS Daniel LINDBERG (Aalto University)

Tijl CRIVITS (Umicore)

P-0186	Thermodynamic Behavior of Industrial Copper Production Slag Saturated with Copper and Iron	Eric KLAFFENBACH (Aurubis AG)
P-0887	Characterisation of Complex Systems through Integrated Experimental and Thermodynamic Modelling Research for Pyrometallurgical Processing	Evgueni JAK (The University of Queensland)
P-0768	Experimental Investigation of Phase Equilibria in the "CuO $_{0.5}$ "- MgO-SiO $_2$ System in Equilibrium with Liquid Cu Metal	Hamed ABDEYAZDAN (The University of Queensland)
P-0731	Experimental Study of Slag/Matte/Metal/Tridymite Phase Equilibria in the Cu-Fe-O-S-Si System at 1200 °C	Svetlana SINEVA (The University of Queensland)
P-0797	The Effect of MgO on High-Alumina Iron Silicate Slag - Spinel Equilibrium in Secondary Copper Smelting	Anna DANCZAK (Aalto University)

Non-ferrous slags II (industrial applications)

DATE February 23 (Tuesday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Evgueni JAK (The University of Queensland)

Seung Hwan AHN (LS-Nikko Copper Inc.)

P-0303	Mechanical Copper Entrainment Related to Solid Phases within Smelting Slags	Lassi KLEMETTINEN (Aalto University)
P-0785	Pilot Scale Powder Injection Practice for Metal Recovery from Copper Slag	Seung Hwan AHN (LS-Nikko Copper Inc.)
P-0892	Development of Mitsubishi C-Furnace Simulation Model for Cu Converting Process and Its Industrial Applications	Soo Sang PARK (LS-Nikko Copper Inc.)
P-1011	Behaviour of Silver and Molybdenum, as Minor Elements, during the Controlled Cooling Treatment of Copper Smelting Slag for Further Grinding and Froth Flotation	Camila PIZARRO (University of Chile)
P-0919	Phase Relations and Evolution of Gangue Minerals in the Black Top of a PGM Smelter	Oscar RIVERA LI KAO (University of Pretoria)
P-0312	A Qualitative Study on Matte/Slag/Copper Melt Interactions with Water/MEG Coolants	Tijl CRIVITS (Umicore)

Physicochemical properties of slags I (viscosity)

DATE February 23 (Tuesday)

TIME 17:00-18:00 (Korea Standard Time)

CHAIRS Hiroyuki SHIBATA (Tohoku University)

II SOHN (Yonsei University)

P-0647	Composition-Structure-Viscosity Relationship of CaO-Al $_2$ O $_3$ -Fe $_1$ O-SiO $_2$ -MgO Slag	Tae Sung KIM (Hanyang University)
P-0366 KEYNOTE	Some Aspects on the Properties of the Slag Containing Titanium Oxide	Chenguang BAI (Chongqing University)
P-0252	The Viscous Behavior of High FeO-bearing Slag Melts Considering Polymeric Unit of Slags	Joon Sung CHOI (Yonsei University)
P-0132	Relation between Local Structure Environment of Iron Ions and Iron Oxide Activities in the Na $_2$ O-SiO $_2$ -FeO-Fe $_2$ O $_3$ Slags	Miyuki HAYASHI (Tokyo Institute of Technology)
P-0235	Physical Properties of Blast Furnace Slag with Full-Ratio V-Ti- Magnetite	Zhengde PANG (Chongqing University)

Physicochemical properties of slags II (physical property and structure characterization)

DATE February 23 (Tuesday)

TIME 18:00-19:00 (Korea Standard Time)

CHAIRS Jung-Wook CHO (Pohang University of Science and Technology)

Sohei SUKENAGA (Tohoku University)

P-0266 KEYNOTE	Thermophysical Properties of Silicate Melts and Glasses	Hiroyuki SHIBATA (Tohoku University)
P-1108 KEYNOTE	Structure of Molten Oxides and Glasses above Mega-Bar Pressures: Insights from High-Resolution Solid-State NMR and Inelastic X-Ray Scattering	Sung Keun LEE (Seoul National University)
P-0683	The Extent of Disorder in Iron-bearing NaAlSi $_3$ O $_8$ and CaAl $_2$ Si $_2$ O $_8$ Glasses: Multi-Nuclear (29 Si, 27 Al, and 17 O) Solid-State NMR Study	Hyo-Im KIM (Seoul National University)
P-0226	Effects of Atmosphere and Melting Time on Surface Tension of Iron Silicate Melts	Sohei SUKENAGA (Tohoku University)
P-0890	Thermal Conductivity Model of the Oxide Melt	Taehyoung KIM (Seoul National University)
P-1010	Thermal Conductivity Measurements of Solid Mattes Containing Fe-S-Ni-Cu-Co from 100-450°C	Rodney HUNDERMARK (Anglo American)

Physicochemical properties of slags III (multiphase crystallization)

DATE February 23 (Tuesday)

TIME 19:00-20:00 (Korea Standard Time)

CHAIRS Miyuki HAYASHI (Tokyo Institute of Technology)

Qifeng SHU (Aalto University)

P-0261	Characterization of Secondary Phases Dispersed in Molten Slags Utilizing Alternative Current Field	Noritaka SAITO (Kyushu University)
P-0704 KEYNOTE	Solidification of Oxide Melts	Peter HAYES (The University of Queensland)
P-0451	Investigation on Crystallization of Steelmaking Slag and Mould Fluxes	Qifeng SHU (University of Oulu)
P-1129	Effect of TiO_2 and SiO_2 on the Crystal Morphology CaF_2 - Al_2O_3 -CaO Base Electroslag Remelting Slag	Jing GUO (Univ. of Sci. and Tech. Beijing)
P-0580	Effect of Crystallization on the Electrical Conductivity of CaO-Al ₂ O ₃ -SiO ₂ -MgO Slag under Isothermal Condition	Ling ZHANG (Katholieke Universiteit Leuven)
P-1139	A Method to Identify the Kinetics of Solid-Phase Growth during Slag Isothermal Crystallisation	Alex KONDRATIEV (National Univ. of Sci. and Tech. MISIS)

Physicochemical properties of slags IV (application to steelmaking)

DATE February 23 (Tuesday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Youn-Bae KANG (Pohang University of Science and Technology)

Timo FABRITIUS (University of Oulu)

P-0899	Influences of DRI Addition and Bubble Sizes on the Foaming Behavior of EAF Slags	Won Yeong SON (Dong-A University)
P-0198 KEYNOTE	The Laboratory Study of Metallurgical Slags and the Reality	Du SICHEN (KTH Royal Institute of Technology)
P-0696	Optimization of Slag Composition for Efficient Dephosphorization and Slag Foamability	Jungho HEO (LS-Nikko Copper Inc.)
P-0208 KEYNOTE	Physico-Chemical Properties of Slag in Different Stages of Its Life Cycle – Case Studies from Recent Slag Research	Timo FABRITIUS (University of Oulu)
P-0582	Interaction Behavior of Biocarbon with Electric Arc Furnace Slag	Xianai HUANG (Natural Resources Canada)

Ferrous slags I-1 (ironmaking-1: iron ore reduction and slag formation)

DATE February 24 (Wednesday)

TIME 16:00-17:00 (Korea Standard Time)

CHAIRS Xuewei LV (Chongqing University)

Joonho LEE (Korea University)

P-0164 KEYNOTE	Role of Hydrogen Gas in Blast Furnace Operation - Improved Wettability of Carbon by Molten Slag	Joonho LEE (Korea University)
P-0184	Characterization of Slag Formed by Melting DRI Phase Relationship Phosphorus Partition and Vanadium Partition	Amanda VICKERFÄLT (KTH Royal Institute of Technology)
P-0400	Comparison on Transient Shrinkage Behavior of Ternary-Component Slags in CO/H ₂ Atmosphere under Simulated Blast Furnace Cohesive Zone Conditions	Junyi DENG (Chongqing University)
P-0802	Effect of Melt Formation and Pore Structure on Reduction Rate of Iron Ore Sinter	Kengo KATO (Osaka University)
P-0340	Effect of Fluxing in the Iron Ore Pellets on the Capacity of Phosphorus Removal of the Self-Formed Slag by DRI Melting	Oscar HESSLING (KTH Royal Institute of Technology)
P-0506	Numerical Investigation of Slag Flow through a Coke Funnel and Packed Bed	Xue Feng DONG (University of Wollongong)

Ferrous slags I-2 (ironmaking-2: physicochemical properties of ironmaking slag)

DATE February 24 (Wednesday)

TIME 17:00-18:00 (Korea Standard Time)
CHAIRS Noritaka SAITO (Kyushu University)

Viswanathan N. NURNI (Indian Institute of Technology Bombay)

P-0517 KEYNOTE	Static Liquid Holdup in the Blast Furnace Dripping Zone – a Fundamental Study	Viswanathan Neelakantan NURNI (Indian Inst. of Tech. Bombay)
P-0159	Effect of Coal and Coke Ash on Blast Furnace Slag Formation – Comparison between PCI, Charcoal, Fossil-based Coke and Bio-Coke	Anne HEIKKILÄ (University of Oulu)
P-0212	An Innovation Slag System for High Alumina Iron Ore in Blast Furnace Process	Xuewei LV (Chongqing University)
P-1314	The Properties of Low MgO Slag in the Actual Blast Furnace Operation	Dong-Geun KIM (Hyundai Steel)
P-0156	Evaluation of Evaporation Kinetics of Potassium from Synthetic Blast Furnace Slag Using Full Factorial Design of Experiments	Anton ANDERSSON (Luleå University of Technology)
P-0456	Perovskite Formation Mechanism in Hematite-Ilmenite Ore Sinter Blend in Argon Atmosphere by In-situ X-Ray Diffraction	Edson Kugara CHIWANDIKA (POSTECH)
P-1158	The Relationship between Viscosity and Sulfide Capacity of BF Slag	Sunghee LEE (POSCO)

Ferrous slags III-1 (inclusion-1: clean steel practice)

DATE February 24 (Wednesday)

TIME 20:00-21:00 (Korea Standard Time)

CHAIRS Joohyun PARK (Hanyang University)

Wangzhong MU (KTH Royal Institute of Technology)

P-0436	The Spontaneous Emulsification of Entrained Inclusions during Casting of High Aluminium Steels	Akalya RAVIRAJ (University of Warwick)
P-0553	Effect of Ladle Glaze on the Evolution of Non-Metallic Inclusions during LMF Operation	Deepoo KUMAR (Indian Inst. of Tech. Bombay)
P-0668 KEYNOTE	Formation of Nitride and Oxide Inclusions in Ferritic Stainless Steel Melts	Jong-Jin PAK (Hanyang University)
P-1277	Optimization the Slag Composition for Cleanliness in Ultra Low Carbon Steel	Geun-Ho PARK (Hyundai Steel)
P-0131 KEYNOTE	The Role of Transient Slags in Steelmaking	Eugene PRETORIUS (Nucor Steel)
P-1416	A Comprehensive Investigation of Oxide Particles Dissolution in the Metallurgical Slag: an Overview of In-Situ Observation Experiments and Theoretical Studies	Wangzhong MU (KTH Royal Institute of Technology)
P-0485	Dissolution Rate of Al $_2$ O $_3$ Inclusion into CaO-Al $_2$ O $_3$ -Fe $_1$ O-MgO-SiO $_2$ Slag System and Its Kinetic Analysis	Youngjoon PARK (POSTECH)

Ferrous slags III-2 (inclusion-2: inclusion control by slag)

DATE February 24 (Wednesday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Youn-Bae KANG (Pohang University of Science and Technology)

Bryan WEBLER (Carnegie Mellon University)

P-0598	Effect of Medium Basicity Refining Slag on the Cleanliness of High Grade Hot Rolled Steel	Huixiang YU (Univ. of Sci. and Tech. Beijing)
P-0503	Influence of Slag Properties on the Behavior of Nonmetallic Inclusions	Dali YOU (Montanuniversität Leoben)
P-0526 KEYNOTE	Physicochemical Properties of Slags for Improvement of Steel Cleanliness; Case Studies of LF, RH and Tundish Conditions	Joohyun PARK (Hanyang University)
P-1261	Effect of CaO/Al ₂ O ₃ Ratio of the Slag on the Formation Behavior of Inclusions in the Al Killed Molten Steel	Jaehong SHIN (KITECH)
P-1101 KEYNOTE	Critical Issues in the Kinetics of Steel-Slag-Inclusion Reactions	Petrus Christiaan PISTORIUS (Carnegie Mellon University)
P-1055	Evolution of Non-Metallic Inclusions Due to Slag/Metal Reactions in Highly Alloyed Steels	Bryan WEBLER (Carnegie Mellon University)
P-0959	Study on Inclusion Composition during Ladle Refining Process of Tire Cord Steel	Gobinath RAJAVEL (JSW Steel Ltd Salem)

Ferrous slags II-1 (steelmaking-1: primary steelmaking slag)

DATE February 24 (Wednesday)

TIME 16:00-17:00 (Korea Standard Time)

CHAIRS Ville-Valtteri VISURI (University of Oulu)

Johan MARTINSSON (KTH Royal Institute of Technology)

P-0358 KEYNOTE	Towards a More Comprehensive Understanding of Slag Chemistry	Geoffrey BROOKS (Swinburne Univ. of Tech.)
P-0941	Modeling Study on Dynamic Evolution of Slag Foaming	Ruifang WANG (Northeastern University)
P-0329	Assessment of the Application Possibilities of Foaming Index on Industrial BOF Process Data	Lotte DE VOS (Ghent University)
P-0192	The Impact of Solid Particles on Foams – Cold Model and High Temperature Experiments	Johan MARTINSSON (KTH Royal Institute of Technology)
P-0262 KEYNOTE	BOS Slag: Formation, Reaction, and Energy and Materials Recovery	Zushu Ll (University of Warwick)
P-0375	Evaluation of Dissolution Rate and Behaviour of MgO Carriers for Primary and Secondary Metallurgical Slag	Elizaveta CHEREMISINA (K1-MET GmbH)

Ferrous slags II-2 (steelmaking-2: refining slag in HMP, BOF, EAF)

DATE February 24 (Wednesday)

TIME 17:00-18:00 (Korea Standard Time)
CHAIRS Zushu LI (University of Warwick)

Jea-Bok CHOI (POSCO)

P-0956	How to Design Hot Metal Desulphurisation Slag with a High Sulphur Capacity and Low Iron Entrapment?	Frank N. H. SCHRAMA (Tata Steel Europe)
P-0896	Improved Hot Metal Desulphurisation Performance through Intelligent Use of Slag Conditioner	Raj Kumar YADAV (JAMIPOL)
P-0200 KEYNOTE	Investigation on the Slag for Production of Extra-Low P Steels by "Slag-Remaining + Double-Slag" BOF Steelmaking Process	Xinhua WANG (Shougang Group Co., Ltd.)
P-0780	How Does Solid Phase Precipitation Affect the Evolution of Phosphorus Removal during the BOF Process? Thermochemical and Industrial Aspects	Sabrine KHADHRAOUI (SMS group GmbH)
P-0498	A Technology of Slag Making for Dephosphorization in Molten Steel during De-P Converter Process	Jea-Bok CHOI (POSCO)
P-0113	Effect of Fluorspar on Dephosphorization Efficiency and Refractory Corrosion in EAF Process Using Dirct Reduced Iron (DRI)	Minkyo OH (Hanyang University)

Ferrous slags II-3 (steelmaking-3: secondary refining and steel quality)

DATE February 24 (Wednesday)

TIME 18:00-19:30 (Korea Standard Time)
CHAIRS Youngjo KANG (Dong-A University)

Jaka BURJA (Institute of Metals and Technology)

P-0738	Improvement of Desulfurization Efficiency by the Submaterial Addition in the Shaft Type EAF	Jungmin YOO (Dongkuk Steel)
P-0652	Effect of Industrial Wastes on Desulfurization Behavior of Molten Steel	Tae Su JEONG (Hanyang University)
P-0534	Thermo-Calc's TCOX10 database & Process Metallurgy Module	A. Nicholas GRUNDY (Thermo-Calc Software AB)
P-0817	Thermochemical Process Simulations Using the Connected Local Equilibria Method – Applying SimuSage and ChemApp to Model Slag Behavior in Metallurgical Processes	Stephan PETERSEN (GTT-Technologies)
P-0170	Chromium Spinel Formation in Stainless Steel Slag	Jaka BURJA (Institute of Metals and Technology)
P-1163	Numerical Modelling of AOD Slag Structure during Cooling	Ville-Valtteri VISURI (University of Oulu)
P-0560	Improvement of High Quality of the New Mold Steel by ESR	D. K. JANG (SeAH Changwon Integrated Special Steel)
P-0796 KEYNOTE	Slag Metallurgy for Steel (On the Base of Electro Slag Refining and Remelting Process)	Lev MEDOVAR (E.O. Paton EWI NASU)
P-0678 KEYNOTE	Steel-Sidewall Interfaces in a Steel Continuous Caster: an Interconnected System of Reaction Sites	Enno ZINNGREBE (Tata Steel Europe)

Kinetics I (multiphase reaction kinetics)

DATE February 24 (Wednesday)

TIME 21:00-22:00 (Korea Standard Time)
CHAIRS Joonho LEE (Korea University)

Kenneth COLEY (Western University)

P-1103 KEYNOTE	Kinetics of MnO Reduction from Slag; Comparison of Carbon and Silicon as Reductants	Kenneth COLEY (Western University)
P-0707	Flux-Mediated Wetting of Alumina by Liquid Fe-Ti-Csat	Thomas BRITT (Carnegie Mellon University)
P-0269	An Experimental Investigation of Vapour Explosions by Droplet Impingement of Aluminum in Water	Arne SIMONS (Ghent University)
P-0468	Experimental Investigation of the Oxidation Kinetics of Molten Lead Silicate Slags	Olivier VERGOTE (Ghent University)
P-0386	The Effect of Ca Alloy Content on the Mass Transfer of B between Si and SiO ₂ -CaO Slag	Erlend Lunnan BJØRNSTAD (Norwegian Univ. of Sci. and Tech.)
P-1080	Investigating the Kinetics of Molten Salt Synthesis of La-based Perovskite Type Oxides	Yonatan YEVILEVICH (Ben-Gurion Univ. of the Negev)

Characterization of slags I (in-situ observation)

DATE February 24 (Wednesday)

TIME 18:00-19:00 (Korea Standard Time)

CHAIRS Yongsug CHUNG (Korea Polytechnic University)

Masanori SUZUKI (Osaka University)

P-0816	In situ Study of the Smelting Phenomena for Pre-Reduced Ilmenite Pellet	Hossein SALEHI (Norwegian Univ. of Sci. and Tech.)
P-0669	In-situ Observation of Slag-Metal Separation Process of Niobium Concentrate	Zhuang MA (Inner Mongolia Univ. of Sci. and Tech.)
P-0541	Sampling Procedure, Characterisation and Quantitative Analyses of Aluminium White Dross	Cathrine Kyung Won SOLEM (Norwegian Univ. of Sci. and Tech.)
P-0274	In-situ Phase Determination of Primary Precipitated Compound from Molten Phosphorus-Containing Slag	Masanori SUZUKI (Osaka University)
P-0185	Advanced Slag Analysis Methods – on-Line Optical Emission Spectrometry, Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy	Matti AULA (University of Oulu)
P-1422	The Fast Analysis of Heterogeneous Materials Such as Slags without Sample Preparation – the Key to In-situ Instead of Post-Mortem Process Control	Alexander SCHLEMMINGER (SECOPTA analytics GmbH)

Electrochemical processing and molten salts I (molten salts for REM recovery)

DATE February 24 (Wednesday)

TIME 20:00-21:00 (Korea Standard Time)

CHAIRS Ryosuke O. SUZUKI (Hokkaido University)

Jungshin KANG (Korea Institute of Geoscience and Mineral Resources)

P-0930	Recovery of Indium from In-Sn Alloy in Molten Fluoride Electrolyte	Kyoung Tae PARK (Korea Inst. of Industrial Tech.)
P-1326 KEYNOTE	Recycling of Critical Metals by Using Molten Salt	Toru H. OKABE (The University of Tokyo)
P-0220	Recovery and Extraction of Rare-Earth Element from Rare-Earth Permanent Magnet Waste by Molten Fluoride Electrolysis	Yusheng YANG (Inner Mongolia Univ. of Sci. and Tech.)
P-1150	Selective Recovery of Rare Earth Elements from a Spent Nd- Fe-B Magnet Using Zinc Chloride	Jungshin KANG (KIGAM)
P-0700 KEYNOTE	Alternative Way of Producing Rare Metals by a Molten Salt Based Process of Oxide Feedstocks	Jonghyeon LEE (Chungnam National University/ ZIRON TECH, Co., Ltd.)

Electrochemical processing and molten salts II (molten salts for metal production)

DATE February 24 (Wednesday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Jonghyeon LEE (Chungnam National University)

Antoine ALLANORE (Massachusetts Institute of Technology)

P-1134 KEYNOTE	Melts Electrochemistry: Theoretical and Experimental Insights	Antoine ALLANORE (Massachusetts Inst. of Tech.)
P-1125	Development of a Novel Electrolytic Process for Producing High-Purity Magnesium Metal Using Magnesium Oxide	Tae-Hyuk LEE (KIGAM)
P-0982 KEYNOTE	Electrodeposition of Silicon from Molten Salt Electrolytes	Geir Martin HAARBERG (Norwegian Univ. of Sci. and Tech.)
P-0374 KEYNOTE	Metal Production via Sulfide from Oxide	Ryosuke O. SUZUKI (Hokkaido University)
P-0755	Electrochemical Mechanism of Desulfurization in CaO-SiO $_2$ - Al $_2\text{O}_3$ System	Sang Hoon LEE (Yonsei University)
P-0397	Correlation between Applied Electricity and Electrochemical Desulfurization of Molten Iron by Molten Slag	Dong-Hyun KIM (POSTECH)

Ferrous slags IV-1 (mold flux-1: mold fluxes for high Al-steels)

DATE February 25 (Thursday)

TIME 16:00-17:00 (Korea Standard Time)

CHAIRS II SOHN (Yonsei University)

Irmtraud MARSCHALL (K1-MET GmbH)

P-1132 KEYNOTE	Mold Flux for High Aluminium Containing Steels	Jung-Wook CHO (POSTECH)
P-0351	Prediction of Al_2O_3 Content in Mold Flux during Continuous Casting	Kenji TSUZUMI (JFE Steel Corporation)
P-0602 KEYNOTE	Development of Non-reactive Mold Flux for the Casting of Advanced High Strength Steels	Wanlin WANG (Central South University)
P-0394	Effect of Na ₂ O on Properties and Structure of CaO-Al ₂ O ₃ -based Mould Fluxes	Qi WANG (The University of New South Wales)
P-0242	Investigation of Calcium Aluminate based Mold Slag	Irmtraud MARSCHALL
	Compositions	(K1-MET GmbH)

Ferrous slags IV-2 (mold flux-2: mold flux fundamentals)

DATE February 25 (Thursday)

TIME 17:00-18:30 (Korea Standard Time)

CHAIRS Jung-Wook CHO (Pohang University of Science and Technology)

Oleg OSTROVSKI (The University of New South Wales)

P-0118	New Mold Slag Compositions for the Continuous Casting of Soft Steels	Nathalie KÖLBL (Montanuniversität Leoben)
P-0219	$\label{eq:effect} Effect of \ Li_2O \ on the \ Crystallization \ of \ Fluorosilicate \ Glass \ and \ Molecular \ Dynamics \ Simulation \ Analysis$	Tae-min YEO (POSTECH)
P-0193	Heat Transfer Control by Dispersed Metallic Particles in CaO-Al $_2$ O $_3$ -CaF $_2$ -based Glassy Mold Flux Film for Continuous Steel Casting	Sung-Hee HYUN (POSTECH)
P-0699	Uncertainty of Physical Property Measurement of Slag / Flux with Volatiles	Junxue ZHAO (Xi'an Univ. of Architecture and Tech.)
P-0545	Development of Experimental Techniques for Qualification of Mould Fluxes for Continuous Casting of Liquid Steel	Ashok KAMARAJ (National Metallurgical Laboratory)
P-0353	Correlation of the High Temperature Viscous Behavior and Structure in Molten CaO-SiO $_2$ -CaF $_2$ Slags Containing Na $_2$ O and K $_2$ O	Minseok SEO (Yonsei University)
P-0265 KEYNOTE	Challenges in the Mould Fluxes Design	Oleg OSTROVSKI (The University of New South Wales)
P-1057	Modeling of non-Newtonian Mold Powders for Continuous Casting of Steel	Hyunjin YANG (Swerim AB)
P-1082	Modelling the Performance of Casting Powders during Continuous Casting of Steel	Pavel Ernesto RAMIREZ LOPEZ (Swerim AB)

Ash and weld fluxes I (coal ash)

DATE February 25 (Thursday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Sun-Joong KIM (Chosun University)

Stephan PETERSEN (GTT-Technologies)

P-1120	Phase Equilibria and Viscosity of K_2O -CaO-SiO $_2$ Slags for Biomass Combustion and Gasification	Daniel LINDBERG (Aalto University)
P-0811	Gaining Insight into the Behavior of Slags in Coal Combustion: Applying the Connected Local Equilibria Method Using ChemApp and SimuSage	Stephan PETERSEN (GTT-Technologies)
P-0445	Real Time Evolutions of Individual Industrial Coal Particles in Varied Oxygen Partial Pressure Environments	Anna NAKANO (National Energy Technology Laboratory)
P-0276	Properties of Eutectic Slags: Filling the Gaps for an Agglomeration Model	Nicole BOND (Natural Resources Canada)

Refractories I (refractory-slag reaction)

DATE February 25 (Thursday)

TIME 16:00-17:00 (Korea Standard Time)

CHAIRS Sun-Joong KIM (Chosun University)

Yongsug Chung (Korea Polytechnic University)

P-1096	Refractory Wear by Molten Copper Slag with Presence of Clays Minerals	Julio OSSANDON (University of Chile)
P-1046 KEYNOTE	Dissolution Phenomena of Refractory Raw Materials in Liquid Slags	Yongsug CHUNG (Korea Polytechnic University)
P-0256	Dynamic Wetting of CaO-SiO ₂ -MgO-FeO _x -Al ₂ O ₃ -MnO-TiO ₂ based Slags on MgO Substrates	Ai Thi Diem NGUYEN (University of Wollongong)
P-0772	A Fundamental Study on the Thermal Degradation of MgO-C in Steelmaking Process	Gi Ho LA (Yonsei University)
P-0848	Freeze Lining Behaviour in DC Smelting Furnaces: the Influence of Furnace Design and Operation	Johannes Hendrik ZIETSMAN (University of Pretoria)
P-0221	Determination of Bath/Freeze Lining Interface Temperature Based on the Rheology of the Slag	Samant NAGRAJ (Metallo Belgium N.V.)
P-0294	Effect of Crystallographic Property of MgO on Spinel Growth at Interface between CaO-SiO ₂ -Al ₂ O ₃ Slag	Cheol Min YOON (Yonsei University)

Energy and environments I (energy recovery and environmental protection)

DATE February 25 (Thursday)

TIME 18:00-19:00 (Korea Standard Time)

CHAIRS Eun Jin JUNG (Research Institute of Industrial Science and Technology)

Hiroyuki MATSUURA (The University of Tokyo)

P-0945 KEYNOTE	Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon Metal with Changing Energy Systems	Gudrun SAEVARSDOTTIR (Reykjavik University)
P-0967	Modification of Cr-bearing Molten Slag for Carbon Capture and Storage	Qing ZHAO (Northeastern University)
P-0288 KEYNOTE	Control of Hydration of Free Magnesia in Steelmaking Slag	Ryo INOUE (Akita University)
P-0464	Use of Oxygen Steelmaking Slag for Remediation of Metalloid-contaminated Water	Somnath BASU (Indian Institute of Technology Bombay)
P-1110	Influence of Chelating Agent on the Elution Characteristic of Steelmaking Slag into Aqueous Environment	Hiroyuki MATSUURA (The University of Tokyo)
P-0623 KEYNOTE	Process Concept for the Dry Recovery of Thermal Energy of Liquid Ferrous Slags	Dieter SENK (RWTH Aachen University)
P-1328	Air Granulation and Energy Recovery of Blast Furnace Slag	Santiago FAUCHER (Ecomaister Co., Ltd.)

Recycling and sustainability I (sustainable utilization of slag and refractory)

DATE February 25 (Thursday)

TIME 19:00-20:00 (Korea Standard Time)

CHAIRS Youngjae KIM (Korea Institute of Geoscience and Mineral Resources)

Johannes SCHENK (Montanuniversität Leoben)

P-0603 KEYNOTE	A Review of Circular Economy Prospects for Stainless Steelmaking Slags	Lauri HOLAPPA (Aalto University)
P-0174	A Computational Study on the Mixing and Reduction of Slags from Ferrochrome and Stainless Steel Production	Eetu-Pekka HEIKKINEN (University of Oulu)
P-0264 KEYNOTE	Processing and Utilization of Steelmaking Slags in the European Union	Johannes SCHENK (Montanuniversität Leoben)
P-0376	Utilization of Waste Materials from the Pulp & Paper Inderstry as Raw Materials in the Steelmaking Industry	Tova JARNERUD (KTH Royal Institute of Technology)
P-1433 KEYNOTE	Some Recycling Aspects of Molten Slags, Fluxes and Salts	Seshadri SEETHARAMAN (KTH Royal Inst. of Technology)

Recycling and sustainability II (slag valorization and processing for higher values)

DATE February 25 (Thursday)

TIME 20:00-21:00 (Korea Standard Time)

CHAIRS Eetu-Pekka HEIKKINEN (University of Oulu)

II SOHN (Yonsei University)

P-1050	Phase Separation in Phosphorus-Containing System without CaO Saturation at Elevated Temperature	Yu-Ichi UCHIDA (Nippon Institute of Technology)
P-0284	Phosphorus Segregation in Basic Oxygen Steelmaking Slags	Brian MONAGHAN (University of Wollongong)
P-0328	Preliminary Numerical Study into Gravity Separation of Dicalcium Silicate from BOS Slag during Solidification	Thi Bang Tuyen NGUYEN (The University of Newcastle)
P-0141	Influence of Al_2O_3 Addition on the Solidified Microstructure and Crystallization Kinetics of BOF Slag	Muxing GUO (Katholieke Universiteit Leuven)
P-0449 KEYNOTE	Perspectives of Slag "Co-product" Zero Waste Full Utilization	II SOHN (Yonsei University)
P-0974	Predicting Slag Properties for Reduced Risk in Mineral Wool Production	Hanlie KOTZE (Consensi Consulting)
P-0431 KEYNOTE	Slag Engineering and Valorization in the Framework of Sustainable Metallurgy	Bart BLANPAIN (Katholieke Universiteit Leuven)

Recycling and sustainability III (novel processing of co-products)

DATE February 25 (Thursday)

TIME 21:00-22:00 (Korea Standard Time)

CHAIRS Muxing GUO (Katholieke Universiteit Leuven)

Jinichiro NAKANO (National Energy Technology Laboratory)

P-0346 KEYNOTE	Cold Fluid Modeling of Air-Blast Slag Atomization	Mansoor BARATI (The University of Toronto)
P-0841	Controlled Evolution of Rare Earth Phosphate in Coal Ash Slag	Jinichiro NAKANO (National Energy Tech. Laboratory)
P-0944	Modeling of Powder Production during Centrifugal Atomization	Sabita SARKAR (Indian Institute of Technology Madras)
P-0144	The Behaviour of Zinc during the Recycling of BOS Filter Cake	Raymond James LONGBOTTOM (University of Wollongong)
P-0861	Foamed Glass Materials Using Quartz from Copper Mine Tailings	Lina M. URIBE (University of Talca)
P-1432 KEYNOTE	Use of Copper Slag for Iron Alloys Fabrication. A Circular Economy Approach for the Chilean Metallurgical Industry	Mario SANCHEZ (University of Andres Bello)

Technology of South Korea unites with abundant mineral resources in North Korea

The dream of the stream of the

Powerful nation of technology and sufficient mineral resources

Be Brilliant. Go Green.

Create Value from Slag!!

Ecomaister's Slag Atomizing Technology recovers energy from slag while transforming the slag into useful products.

Contact us today to create more value from your business while reducing its carbon footprint.

www.ecomaister.com

동국제강 스물을 다시 만들다

철로 철을 만드는 Steel Recycling 철을 다시 살리는 기술은 환경을 살리는 기술입니다.

With the opening of the most advanced integrated steel mill, Hyundai Steel introduces the Green Era

Power of with

Power of 'With' lets us go the extra mile for the better world. This is why we pursue corporate citizenship.

posco

This work was supported by the Korean Federation of Science and Technology Societies (KOFST) Grant funded by the Korean Government.